हॉज अनुमान
Millennium Prize Problems |
---|
गणित में, हॉज अनुमान बीजगणितीय ज्यामिति और जटिल ज्यामिति में एक प्रमुख अनसुलझी समस्या है जो एक गैर-एकवचन जटिल संख्या बीजगणितीय विविधता के बीजगणितीय टोपोलॉजी को इसकी उप-किस्मों से संबंधित करता है।
सरल शब्दों में, हॉज अनुमान का दावा है कि कुछ स्थान (गणित), जटिल बीजगणितीय किस्मों में छिद्रों की संख्या जैसी बुनियादी सामयिक जानकारी को उन स्थानों के अंदर बैठे संभावित अच्छे आकृतियों का अध्ययन करके समझा जा सकता है, जो किसी फ़ंक्शन के शून्य की तरह दिखते हैं। बहुपद समीकरणों की। बाद की वस्तुओं का अध्ययन बीजगणित और विश्लेषणात्मक कार्यों के कलन का उपयोग करके किया जा सकता है, और यह अप्रत्यक्ष रूप से उच्च-आयामी स्थानों के व्यापक आकार और संरचना को समझने की अनुमति देता है जिसे अन्यथा आसानी से नहीं देखा जा सकता है।
अधिक विशेष रूप से, अनुमान बताता है कि कुछ डॉ कहलमज गर्भाशय वर्ग बीजगणितीय हैं; अर्थात्, वे पोंकारे द्वैत के योग हैं | उप-किस्मों के होमोलॉजी वर्गों के पोंकारे द्वैत हैं। यह स्कॉटिश गणितज्ञ विलियम वालेंस डगलस हॉज द्वारा 1930 और 1940 के बीच एक काम के परिणामस्वरूप तैयार किया गया था ताकि जटिल बीजगणितीय किस्मों के मामले में मौजूद अतिरिक्त संरचना को शामिल करने के लिए डी रम कोहोलॉजी के विवरण को समृद्ध किया जा सके। कैम्ब्रिज, मैसाचुसेट्स में आयोजित 1950 अंतर्राष्ट्रीय गणितज्ञ कांग्रेस के दौरान एक संबोधन में हॉज ने इसे प्रस्तुत करने से पहले इस पर थोड़ा ध्यान दिया। हॉज अनुमान, क्ले गणित संस्थान के मिलेनियम पुरस्कार समस्याओं में से एक है, जो हॉज अनुमान को साबित या अस्वीकार कर सकता है, उसके लिए $1,000,000 का पुरस्कार है।
प्रेरणा
एक्स को जटिल आयाम एन के कई गुना कॉम्पैक्ट जगह कॉम्प्लेक्स होने दें। फिर एक्स वास्तविक आयाम का एक उन्मुख चिकनी कई गुना है , इसलिए इसके सह-समरूपता समूह डिग्री शून्य से होते हैं . मान लें कि X एक काहलर मैनिफोल्ड है, ताकि जटिल गुणांकों के साथ इसके कोहोलॉजी पर एक अपघटन हो
कहाँ कोहोलॉजी कक्षाओं का उपसमूह है जो प्रकार के हार्मोनिक रूपों द्वारा दर्शाए जाते हैं . यही है, ये सह-विज्ञान वर्ग हैं जो अंतर रूपों द्वारा दर्शाए जाते हैं, जो स्थानीय निर्देशांक के कुछ विकल्पों में होते हैं , एक हार्मोनिक फ़ंक्शन समय के रूप में लिखा जा सकता है
चूँकि X एक कॉम्पैक्ट ओरिएंटेड मैनिफोल्ड है, X का एक मौलिक वर्ग है, और इसलिए X को एकीकृत किया जा सकता है।
Z को आयाम k के X का एक जटिल सबमनीफोल्ड होने दें, और दें समावेशन मानचित्र हो। एक विभेदक रूप चुनें प्रकार का . हम एकीकृत कर सकते हैं पुलबैक_(डिफरेंशियल_ज्यामिति)#पुलबैक_ऑफ_डिफरेंशियल_फॉर्म्स फ़ंक्शन का उपयोग करके ज़ेड से अधिक ,
- .
इस इंटीग्रल का मूल्यांकन करने के लिए, Z का एक बिंदु चुनें और इसे नाम दें . Z को X में शामिल करने का अर्थ है कि हम स्थानीय निर्देशांक चुन सकते हैं एक्स पर और है . अगर , तब कुछ शामिल होना चाहिए कहाँ Z पर वापस शून्य पर खींचता है। के लिए भी यही सच है अगर . नतीजतन, यह अभिन्न शून्य है अगर .
हॉज अनुमान तब (शिथिलता से) पूछता है:
- कौन सी कोहोलॉजी क्लासेस में जटिल उप-किस्मों Z से आते हैं?
हॉज अनुमान का कथन
होने देना
हम इसे X पर 2k डिग्री के हॉज क्लास का समूह कहते हैं।
हॉज अनुमान का आधुनिक कथन है
- 'हॉज अनुमान।' बता दें कि X एक गैर-विलक्षण जटिल प्रोजेक्टिव मैनिफोल्ड है। फिर एक्स पर हर हॉज वर्ग एक्स के जटिल उप-किस्मों के कोहोलॉजी वर्गों के तर्कसंगत गुणांक के साथ एक रैखिक संयोजन है।
एक प्रोजेक्टिव कॉम्प्लेक्स मैनिफोल्ड एक जटिल मैनिफोल्ड है जिसे जटिल प्रक्षेप्य स्थान में एम्बेड किया जा सकता है। क्योंकि प्रोजेक्टिव स्पेस में काहलर मैट्रिक, फ्यूबिनी-स्टडी मेट्रिक होता है, इस तरह का मैनिफोल्ड हमेशा काहलर मैनिफोल्ड होता है। बीजगणितीय ज्यामिति और विश्लेषणात्मक ज्यामिति#Chow.27s प्रमेय|चाउ के प्रमेय द्वारा, एक प्रोजेक्टिव कॉम्प्लेक्स मैनिफोल्ड भी एक चिकनी प्रोजेक्टिव बीजगणितीय विविधता है, यानी यह सजातीय बहुपदों के संग्रह का शून्य सेट है।
बीजगणितीय चक्रों के संदर्भ में सुधार
हॉज अनुमान को वाक्यांशबद्ध करने के दूसरे तरीके में एक बीजगणितीय चक्र का विचार शामिल है। X पर एक बीजगणितीय चक्र, X की उप-किस्मों का एक औपचारिक संयोजन है; अर्थात्, यह कुछ रूप है
गुणांक को आमतौर पर अभिन्न या तर्कसंगत माना जाता है। हम एक बीजगणितीय चक्र के कोहोलॉजी वर्ग को उसके घटकों के कोहोलॉजी वर्गों के योग के रूप में परिभाषित करते हैं। यह डी रम कोहोलॉजी के चक्र वर्ग मानचित्र का एक उदाहरण है, वील कोहोलॉजी देखें। उदाहरण के लिए, उपरोक्त चक्र का कोहोलॉजी वर्ग होगा
इस तरह के कोहोलॉजी वर्ग को बीजगणितीय कहा जाता है। इस अंकन के साथ हॉज अनुमान बन जाता है
- एक्स को एक प्रक्षेपी जटिल कई गुना होने दें। फिर एक्स पर हर हॉज वर्ग बीजगणितीय है।
हॉज अनुमान में धारणा है कि एक्स बीजगणितीय (प्रक्षेपी जटिल कई गुना) कमजोर नहीं किया जा सकता है। 1977 में, स्टीवन जकर ने दिखाया कि हॉज अनुमान के लिए एक जटिल तोरी के रूप में विश्लेषणात्मक तर्कसंगत कोहोलॉजी के प्रकार के प्रति उदाहरण का निर्माण करना संभव है। , जो प्रक्षेपी बीजगणितीय नहीं है। (परिशिष्ट बी देखें Zucker (1977))
हॉज अनुमान के ज्ञात मामले
कम आयाम और कोडिमेंशन
हॉज अनुमान पर प्रथम परिणाम का कारण है Lefschetz (1924). वास्तव में, यह अनुमान से पहले का है और हॉज की कुछ प्रेरणा प्रदान करता है।
- प्रमेय ((1,1)-श्रेणियों पर लेफ्शेट्ज़ प्रमेय) का कोई भी तत्व एक विभाजक (बीजीय ज्यामिति) का कोहोलॉजी वर्ग है . विशेष रूप से, हॉज अनुमान के लिए सत्य है .
शेफ कोहोलॉजी और घातीय सटीक अनुक्रम का उपयोग करके एक बहुत ही त्वरित प्रमाण दिया जा सकता है। (भाजक का कोहोलॉजी वर्ग इसके पहले चेर्न वर्ग के बराबर हो जाता है।) लेफशेट्ज़ का मूल प्रमाण सामान्य कार्य (ज्यामिति) द्वारा आगे बढ़ा, जिसे हेनरी पॉइनकेयर द्वारा पेश किया गया था। हालांकि, ग्रिफिथ्स ट्रांसवर्सलिटी प्रमेय से पता चलता है कि यह दृष्टिकोण उच्च कोडिमेन्शनल सबवेराइटी के लिए हॉज अनुमान को साबित नहीं कर सकता है।
कठिन Lefschetz प्रमेय द्वारा, कोई साबित कर सकता है:
- प्रमेय। यदि हॉज अनुमान डिग्री के हॉज वर्गों के लिए है , सभी के लिए , तो हॉज अनुमान डिग्री के हॉज वर्गों के लिए है .
उपरोक्त दो प्रमेयों के संयोजन का अर्थ है कि हॉज अनुमान डिग्री के हॉज वर्गों के लिए सही है . यह हॉज अनुमान को कब सिद्ध करता है अधिकतम तीन आयाम हैं।
(1,1)-वर्गों पर Lefschetz प्रमेय का अर्थ यह भी है कि यदि सभी हॉज वर्ग विभाजक के हॉज वर्गों द्वारा उत्पन्न होते हैं, तो हॉज अनुमान सत्य है:
- परिणाम। यदि बीजगणित से उत्पन्न होता है , तो हॉज अनुमान लागू होता है .
हाइपरसर्फ्स
मजबूत और कमजोर Lefschetz प्रमेय द्वारा, हाइपरसर्फ्स के लिए हॉज अनुमान का एकमात्र गैर-तुच्छ हिस्सा 2m-आयामी ऊनविम पृष्ठ का डिग्री एम भाग (यानी, मध्य कोहोलॉजी) है। . यदि डिग्री डी 2 है, यानी एक्स एक चतुर्भुज है, हॉज अनुमान सभी एम के लिए मान्य है। के लिए , यानी, चौगुना, हॉज अनुमान के लिए जाना जाता है .[1]
एबेलियन किस्में
अधिकांश एबेलियन किस्म के लिए, बीजगणित एचडीजी * (एक्स) डिग्री एक में उत्पन्न होता है, इसलिए हॉज अनुमान धारण करता है। विशेष रूप से, हॉज अनुमान पर्याप्त रूप से सामान्य एबेलियन किस्मों के लिए, अण्डाकार वक्रों के उत्पादों के लिए, और प्रधान आयाम की सरल एबेलियन किस्मों के लिए है।[2][3][4] हालाँकि, Mumford (1969) ने एक एबेलियन किस्म का एक उदाहरण बनाया जहाँ Hdg2(X) भाजक वर्गों के गुणनफल से उत्पन्न नहीं होता है। Weil (1977) ने इस उदाहरण को यह दिखाकर सामान्यीकृत किया कि जब भी विविधता में एक काल्पनिक द्विघात क्षेत्र द्वारा जटिल गुणन होता है, तो एचडीजी2(X) भाजक वर्गों के गुणनफल से उत्पन्न नहीं होता है। Moonen & Zarhin (1999) ने साबित किया कि 5 से कम आयाम में, या तो एचडीजी * (एक्स) डिग्री एक में उत्पन्न होता है, या विविधता में एक काल्पनिक द्विघात क्षेत्र द्वारा जटिल गुणन होता है। बाद के मामले में, हॉज अनुमान केवल विशेष मामलों में जाना जाता है।
सामान्यीकरण
अभिन्न हॉज अनुमान
हॉज का मूल अनुमान था
- इंटीग्रल हॉज अनुमान। होने देना X एक प्रोजेक्टिव कॉम्प्लेक्स मैनिफोल्ड हो। फिर हर कोहोलॉजी क्लास में समाकल गुणांकों के साथ एक बीजगणितीय चक्र का कोहोलॉजी वर्ग है X.
यह अब झूठा माना जाता है। पहला प्रति उदाहरण द्वारा बनाया गया था Atiyah & Hirzebruch (1961). कश्मीर सिद्धांत का उपयोग करते हुए, उन्होंने मरोड़ वाले कोहोलॉजी वर्ग का एक उदाहरण बनाया- जो कि एक सह-विज्ञान वर्ग है α ऐसा है कि nα = 0 कुछ सकारात्मक पूर्णांक के लिए n—जो बीजगणितीय चक्र का वर्ग नहीं है। ऐसा वर्ग आवश्यक रूप से हॉज वर्ग है। Totaro (1997) ने सह-बोर्डवाद के ढांचे में उनके परिणाम की पुनर्व्याख्या की और ऐसे वर्गों के कई उदाहरण पाए।
इंटीग्रल हॉज अनुमान का सबसे सरल समायोजन है
- इंटीग्रल हॉज अनुमान मोडुलो टॉर्सन। होने देना X एक प्रोजेक्टिव कॉम्प्लेक्स मैनिफोल्ड हो। फिर हर कोहोलॉजी क्लास में अभिन्न गुणांक वाले बीजगणितीय चक्र के एक मरोड़ वर्ग और कोहोलॉजी वर्ग का योग है X.
समान रूप से, विभाजित करने के बाद मरोड़ वर्गों द्वारा, प्रत्येक वर्ग एक अभिन्न बीजगणितीय चक्र के कोहोलॉजी वर्ग की छवि है। यह भी असत्य है। Kollár (1992) हॉज वर्ग का एक उदाहरण मिला α जो बीजगणितीय नहीं है, लेकिन जिसका पूर्णांक गुणज है जो बीजगणितीय है।
Rosenschon & Srinivas (2016) ने दिखाया है कि एक सही इंटीग्रल हॉज अनुमान प्राप्त करने के लिए, चाउ समूहों को बदलने की जरूरत है, जिसे मोटिविक कोहोलॉजी समूह के रूप में भी व्यक्त किया जा सकता है, जिसे ईटेल (या लिचटेनबाम) प्रेरक कोहोलॉजी के रूप में जाना जाता है। वे दिखाते हैं कि तर्कसंगत हॉज अनुमान इस संशोधित प्रेरक कोहोलॉजी के लिए एक अभिन्न हॉज अनुमान के बराबर है।
काहलर किस्मों के लिए हॉज अनुमान
हॉज अनुमान का एक स्वाभाविक सामान्यीकरण पूछेगा:
- काहलर किस्मों के लिए हॉज अनुमान, भोली संस्करण। बता दें कि 'X' एक जटिल काहलर मैनिफोल्ड है। फिर 'एक्स' पर हर हॉज वर्ग 'एक्स' की जटिल उप-किस्मों के कोहोलॉजी वर्गों के तर्कसंगत गुणांक के साथ एक रैखिक संयोजन है।
यह बहुत आशावादी है, क्योंकि इस कार्य को करने के लिए पर्याप्त उप-किस्में नहीं हैं। एक संभावित विकल्प इसके बजाय निम्नलिखित दो प्रश्नों में से एक पूछना है:
- काहलर किस्मों के लिए हॉज अनुमान, वेक्टर बंडल संस्करण। बता दें कि 'X' एक जटिल काहलर मैनिफोल्ड है। फिर X पर हर हॉज क्लास 'X पर वेक्टर बंडलों के चेर्न वर्गों के तर्कसंगत गुणांक के साथ एक रैखिक संयोजन है।
- काहलर किस्मों के लिए हॉज अनुमान, सुसंगत शीफ संस्करण। बता दें कि 'X' एक जटिल काहलर मैनिफोल्ड है। फिर X पर हर हॉज वर्ग X पर सुसंगत ढेरों के चेर्न वर्गों के तर्कसंगत गुणांकों के साथ एक रैखिक संयोजन है।
Voisin (2002) ने साबित किया कि सुसंगत ढेरों के चेर्न वर्ग सदिश बंडलों के चेर्न वर्गों की तुलना में सख्ती से अधिक हॉज वर्ग देते हैं और सभी हॉज वर्गों को उत्पन्न करने के लिए सुसंगत शेवों के चेर्न वर्ग अपर्याप्त हैं। नतीजतन, काहलर किस्मों के लिए हॉज अनुमान के एकमात्र ज्ञात फॉर्मूलेशन झूठे हैं।
सामान्यीकृत हॉज अनुमान
हॉज ने इंटीग्रल हॉज अनुमान की तुलना में एक अतिरिक्त, मजबूत अनुमान लगाया। मान लें कि X पर एक कोहोलॉजी वर्ग सह-स्तर c (coniveau c) का है, यदि यह X के c-कोड-आयामी उप-विविधता पर एक सह-विज्ञान वर्ग का पुशफॉरवर्ड है। सह-स्तर के कोहोलॉजी वर्ग कम से कम c के सह-विज्ञान को फ़िल्टर करते हैं। , और यह देखना आसान है कि निस्पंदन का cth चरण Ncएचk(एक्स, 'जेड') संतुष्ट करता है
हॉज का मूल बयान था
- सामान्यीकृत हॉज अनुमान, हॉज का संस्करण।
Grothendieck (1969) ने देखा कि यह तर्कसंगत गुणांकों के साथ भी सत्य नहीं हो सकता है, क्योंकि दाहिनी ओर हमेशा हॉज संरचना नहीं होती है। हॉज अनुमान का उनका संशोधित रूप है
- सामान्यीकृत हॉज अनुमान। एनcएचk(X, 'Q') H की सबसे बड़ी उप-हॉज संरचना हैk(एक्स, 'जेड') में निहित है
यह संस्करण खुला है।
हॉज लोकी की बीजगणितीयता
हॉज अनुमान के पक्ष में सबसे मजबूत सबूत का बीजगणितीय परिणाम है Cattani, Deligne & Kaplan (1995). मान लीजिए कि हम एक्स की जटिल संरचना को आसानी से जुड़े आधार पर बदलते हैं। तब X का टोपोलॉजिकल कोहोलॉजी नहीं बदलता है, लेकिन हॉज अपघटन बदल जाता है। यह ज्ञात है कि यदि हॉज अनुमान सत्य है, तो आधार पर सभी बिंदुओं का स्थान जहां एक फाइबर का कोहोलॉजी एक हॉज वर्ग है, वास्तव में एक बीजगणितीय उपसमुच्चय है, अर्थात यह बहुपद समीकरणों द्वारा काट दिया जाता है। कट्टानी, डेलिग्ने और कपलान (1995) ने साबित किया कि हॉज अनुमान को ग्रहण किए बिना यह हमेशा सच होता है।
यह भी देखें
संदर्भ
- ↑ James Lewis: A Survey of the Hodge Conjecture, 1991, Example 7.21
- ↑ Mattuck, Arthur (1958). "एबेलियन किस्मों पर चक्र". Proceedings of the American Mathematical Society. 9 (1): 88–98. doi:10.2307/2033404. JSTOR 2033404.
- ↑ "बीजगणितीय चक्र और जीटा कार्यों के ध्रुव". ResearchGate. Retrieved 2015-10-23.
- ↑ Tankeev, Sergei G (1988-01-01). "संख्या क्षेत्रों पर प्रधान आयाम की सरल एबेलियन किस्मों पर चक्र". Mathematics of the USSR-Izvestiya. 31 (3): 527–540. Bibcode:1988IzMat..31..527T. doi:10.1070/im1988v031n03abeh001088.
- Atiyah, M. F.; Hirzebruch, F. (1961), "Analytic cycles on complex manifolds", Topology, 1: 25–45, doi:10.1016/0040-9383(62)90094-0 Available from the Hirzebruch collection (pdf).
- Cattani, Eduardo; Deligne, Pierre; Kaplan, Aroldo (1995), "On the locus of Hodge classes", Journal of the American Mathematical Society, 8 (2): 483–506, arXiv:alg-geom/9402009, doi:10.2307/2152824, JSTOR 2152824, MR 1273413.
- Grothendieck, A. (1969), "Hodge's general conjecture is false for trivial reasons", Topology, 8 (3): 299–303, doi:10.1016/0040-9383(69)90016-0.
- Hodge, W. V. D. (1950), "The topological invariants of algebraic varieties", Proceedings of the International Congress of Mathematicians, Cambridge, MA, 1: 181–192.
- Kollár, János (1992), "Trento examples", in Ballico, E.; Catanese, F.; Ciliberto, C. (eds.), Classification of irregular varieties, Lecture Notes in Math., vol. 1515, Springer, p. 134, ISBN 978-3-540-55295-6.
- Lefschetz, Solomon (1924), L'Analysis situs et la géométrie algébrique, Collection de Monographies publiée sous la Direction de M. Émile Borel (in français), Paris: Gauthier-Villars Reprinted in Lefschetz, Solomon (1971), Selected papers, New York: Chelsea Publishing Co., ISBN 978-0-8284-0234-7, MR 0299447.
- Moonen, Ben J. J.; Zarhin, Yuri G. (1999), "Hodge classes on abelian varieties of low dimension", Mathematische Annalen, 315 (4): 711–733, arXiv:math/9901113, doi:10.1007/s002080050333, MR 1731466, S2CID 119180172.
- Mumford, David (1969), "A Note of Shimura's paper "Discontinuous groups and abelian varieties"", Mathematische Annalen, 181 (4): 345–351, doi:10.1007/BF01350672, S2CID 122062924.
- Rosenschon, Andreas; Srinivas, V. (2016), "Étale motivic cohomology and algebraic cycles" (PDF), Journal of the Institute of Mathematics of Jussieu, 15 (3): 511–537, doi:10.1017/S1474748014000401, MR 3505657, S2CID 55560040, Zbl 1346.19004
- Totaro, Burt (1997), "Torsion algebraic cycles and complex cobordism", Journal of the American Mathematical Society, 10 (2): 467–493, arXiv:alg-geom/9609016, doi:10.1090/S0894-0347-97-00232-4, JSTOR 2152859, S2CID 16965164.
- Voisin, Claire (2002), "A counterexample to the Hodge conjecture extended to Kähler varieties", International Mathematics Research Notices, 2002 (20): 1057–1075, doi:10.1155/S1073792802111135, MR 1902630, S2CID 55572794.
- Weil, André (1977), "Abelian varieties and the Hodge ring", Collected papers, vol. III, pp. 421–429
- Zucker, Steven (1977), "The Hodge conjecture for cubic fourfolds", Compositio Mathematica, 34 (2): 199–209, MR 0453741
बाहरी संबंध
- Deligne, Pierre. "The Hodge Conjecture" (PDF) (The Clay Math Institute official problem description).
- Popular lecture on Hodge Conjecture by Dan Freed (University of Texas) (Real Video) (Slides)
- Biswas, Indranil; Paranjape, Kapil Hari (2002), "The Hodge Conjecture for general Prym varieties", Journal of Algebraic Geometry, 11 (1): 33–39, arXiv:math/0007192, doi:10.1090/S1056-3911-01-00303-4, MR 1865912, S2CID 119139470
- Burt Totaro, Why believe the Hodge Conjecture?
- Claire Voisin, Hodge loci