गैर-अनुवर्ती बीजगणितीय ज्यामिति

From Vigyanwiki

गैर-अनुवर्ती बीजगणितीय ज्यामिति गणित की एक शाखा है और विशिष्ट रूप से गैर-अनुवर्ती ज्यामिति एक दिशा के रूप में होती है, जो गैर-अनुवर्ती बीजगणित वस्तुओं के औपचारिक डुअल्स जैसे रिंग्स (गणित) के साथ-साथ उनसे प्राप्त ज्यामितीय वस्तुओं के ज्यामितीय गुणों का अध्ययन करती है उदाहरण के लिए ग्लूइंग द्वारा स्थानीयकरण या गैर-अनुवर्ती स्टैक भागफल के रूप में होते है।

उदाहरण के लिए गैर-अनुवर्ती बीजगणितीय ज्यामिति को गैर-अनुवर्ती रिंगों के वर्णक्रम के उपयुक्त ग्लूइंग द्वारा बीजगणितीय योजना का विस्तार करना है; जो इस बात पर निर्भर करता है कि कैसे शाब्दिक रूप से सामान्यतः इस उद्देश्य और वर्णक्रम की धारणा को गैर-अनुवर्ती सेटिंग में समझा जाता है और इसे विभिन्न स्तरों पर प्राप्त किया जाता है। यह सफलता के विभिन्न स्तरों में प्राप्त किया जाता है और इस प्रकार गैर अनुवर्ती रिंग यहाँ एक अनुवर्ती योजना (गणित) पर नियमित फलनो के अनुवर्ती रिंग का सामान्यीकरण करता है। पारंपरिक अनुवर्ती बीजगणितीय ज्यामिति में सामान्य रिक्त स्थान पर फलन में बिंदुवार गुणन द्वारा परिभाषित उत्पाद के रूप में होता है और इस प्रकार इन फलनो के मूल्यों के रूप में अनुवर्ती गुणधर्म फलन के मान किसी समय b को b गुणन और a के समान रूप में क्रमविनिमेयता करते हैं। यह उल्लेखनीय है कि गैर-अनुवर्ती साहचर्य बीजगणित को गैर-अनुवर्ती स्थान पर फलनो के बीजगणित के रूप में देखना एक दूरगामी ज्यामितीय अंतर्ज्ञान के रूप में है, चूँकि यह औपचारिक रूप से एक भ्रम की तरह दिखता है।

गैर-अनुवर्ती ज्यामिति के लिए और विशेष रूप से गैर-अनुवर्ती बीजगणितीय ज्यामिति के लिए अधिकांश प्रेरणा विशेष रूप से क्वांटम भौतिकी से ली जाती है और इस प्रकार जहां वेधशालाओं को वास्तव में फलनो के गैर-अनुवर्ती एनालॉग के रूप में देखा जाता है, इसलिए उनके ज्यामितीय पहलुओं को देखने की क्षमता वांछनीय रूप में होती है।

क्षेत्र के मानों में से एक यह है कि यह अनुवर्ती बीजीय ज्यामिति जैसे ब्राउर समूह में वस्तुओं के अध्ययन के लिए नई प्रोद्योगिकीय भी प्रदान करता है।

गैर-अनुवर्ती बीजगणितीय ज्यामिति की विधियाँ अनुवर्ती बीजगणितीय ज्यामिति की विधियों के अनुरूप हैं, लेकिन अधिकांशतः आधार भिन्न रूप में होते हैं। अनुवर्ती बीजगणितीय ज्यामिति में स्थानीय व्यवहार अनुवर्ती बीजगणित और विशेष रूप से स्थानीय रिंगो के अध्ययन द्वारा ग्रहण किया जाता है। इनके पास गैर-अनुवर्ती सेटिंग में इनका रिंग-सैद्धांतिक एनालॉग के रूप में नहीं है; यद्यपि एक श्रेणीबद्ध सेटअप में गैर-अनुवर्ती वर्णक्रम पर क्वासिकोहेरेंट शेव की स्थानीय श्रेणियों के ढेर (गणित) के बारे में बात कर सकते हैं और इस प्रकार वैश्विक गुण जैसे कि अधिकांशतः समरूपी बीजगणित और K सिद्धांत से उत्पन्न होने वाले गैर-अनुवर्ती सेटिंग के रूप में होते है।

इतिहास

मौलिक दृष्टिकोण: गैर-अनुवर्ती स्थानीयकरण का विषय

अनुवर्ती बीजगणितीय ज्यामिति एक रिंग के वर्णक्रम के निर्माण से प्रारंभ होती है। बीजगणितीय चर के बिंदु सामान्यतः योजना गणित रिंग के प्रमुख आदर्श के रूप में है और बीजगणितीय विविधता पर फलन रिंग के तत्व के रूप में होते है। एक गैर-अनुवर्ती रिंग यद्यपि कोई उचित गैर-शून्य दो तरफा प्रमुख आदर्श नहीं हो सकता है। उदाहरण के लिए यह एफ़िन स्पेस पर बहुपद अंतर ऑपरेटरों के वेइल बीजगणित के बारे में सच है, वीइल बीजगणित एक साधारण रिंग है। उदाहरण के लिए एक प्राथमिक वर्णक्रम को एक प्राचीन वर्णक्रम द्वारा प्रतिस्थापित करने का प्रयास किया जाता है और इस प्रकार गैर-अनुवर्ती स्थानीयकरण के सिद्धांत के साथ-साथ मूल सिद्धांत के रूप में होता है। यह कुछ सीमा तक काम करता है उदाहरण के लिए डिक्समायर के लिफाफा बीजगणित को लाई बीजगणित के लिफाफा बीजगणित के प्राचीन वर्णक्रम के लिए गैर-अनुवर्ती बीजगणितीय ज्यामिति के रूप में काम करने के बारे में सोचा जाता है। इसी तरह की भावना में एक और काम है माइकल आर्टिन ने गैर-अनुवर्ती रिंग्स का शीर्षक दिया है,[1] जो एक गैर-अनुवर्ती ज्यामिति दृष्टिकोण से प्रतिनिधित्व सिद्धांत का अध्ययन करने का एक प्रयास है और इस प्रकार दोनों दृष्टिकोणों के लिए महत्वपूर्ण अंतर्दृष्टि यह है कि अलघुकरणीय प्रतिनिधित्व या कम से कम प्राचीन आदर्शों को गैर-अनुवर्ती बिंदु " के रूप में माना जा सकता है।

ढेरों की श्रेणियों का उपयोग करते हुए आधुनिक दृष्टिकोण

जैसे-जैसे यह आरंभ होता है प्राचीन वर्णक्रम में काम करने योग्य शेफ सिद्धांत को विकसित करना आसान नहीं होता है और इस प्रकार यह कोई कल्पना कर सकता है कि यह कठिनाई एक प्रकार की क्वांटम परिघटना के कारण होती है और इस प्रकार किसी स्थान पर बिंदुओं को दूर तक प्रभावित कर सकती है और वास्तव में बिन्दुओं का अलग-अलग क्रिया करना और किसी स्थान को मात्र बिन्दुओं के संग्रह के रूप में देखना उचित नहीं होता है।

उपरोक्त दिए गए कारण, पियरे गेब्रियल की शोध में निहित एक प्रतिमान को सम्मिलित करता है और जो आंशिक रूप से पियरे गेब्रियल और अलेक्जेंडर एल रोसेनबर्ग के बाद गेब्रियल रोसेनबर्ग पुनर्निर्माण प्रमेय को आंशिक रूप से न्यायोचित ठहराया है और इस प्रकार अनुवर्ती योजनाओं के आइसोमोर्फिज्म तक पुनर्निर्माण किया जा सकता है जो पूरी तरह से क्वासिकोहेरेंट की एबेलियन श्रेणी से है। अलेक्जेंडर ग्रोथेंडिक ने सिखाया कि ज्यामिति करने के लिए किसी स्थान की आवश्यकता नहीं होती है, यह उस स्थान पर ढेरों की एक श्रेणी के लिए पर्याप्त रूप में है; यह विचार यूरी मैनिन द्वारा गैर-अनुवर्ती बीजगणित में प्रेषित किया गया है। यहां कुछ कमजोर, अर्ध सुसंगत ढेरों की व्युत्पन्न श्रेणियों से पुनः नवीकरण प्रमेय के रूप में है, जो व्युत्पन्न गैर-अनुवर्ती बीजगणितीय ज्यामिति को प्रेरित करते हैं जैसे नीचे दिखाया गया है।

व्युत्पन्न बीजगणितीय ज्यामिति

संभवतः आधुनिक दृष्टिकोण विरूपण सिद्धांत के माध्यम से है, जो गैर-अनुवर्ती बीजगणितीय ज्यामिति को व्युत्पन्न बीजगणितीय ज्यामिति के क्षेत्र में रखना चाहते है।

प्रेरक उदाहरण के रूप में, सम्मिश्र संख्याओं C पर एक-आयामी वेइल बीजगणित पर विचार करते है। यह संबंध मुक्त रिंग C<x, y> का भागफल है

xy - yx = 1.

यह रिंग एकल चर x में बहुपद अवकल संचालकों का प्रतिनिधित्व करता है और y अवकल संचालकों ∂x के रूप में होते है यह रिंग संबंधों द्वारा दिए गए पैरामीटर समूह में फिट बैठती है xy - yx = α. जब α शून्य नहीं होता है, तब यह संबंध वेइल बीजगणित के लिए रिंग आइसोमोर्फिक निर्धारित करता है। जब α शून्य होता है, तथापि संबंध x और y के लिए क्रमविनिमेयता संबंध होता है और परिणामी भागफल रिंग दो चर, C'[x, y] में बहुपद रिंग के रूप में होता है। ज्यामितीय रूप से दो चरों में बहुपद रिंग द्वि-आयामी संबंध समष्टि 'A2' का प्रतिनिधित्व करता है, इसलिए इस एक-पैरामीटर समूह के अस्तित्व का मानना है कि एफाइन समष्टि वेइल बीजगणित द्वारा निर्धारित स्थान में गैर-अनुवर्ती विकृतियों को स्वीकार करता है। यह विरूपण अंतर आपरेटर के प्रतीक से संबंधित है और वह 'A'2 एफ़िन लाइन का स्पर्शरेखा बंडल है। वेइल बीजगणित का अध्ययन करने से एफ़िन समष्टि के बारे में जानकारी मिल सकती है वेइल बीजगणित के बारे में डिक्समियर अनुमान एफ़िन समष्टि के बारे में जैकोबियन अनुमान के बराबर है।

दृष्टिकोण की इस पंक्ति में ओपेराड की धारणा एक सेट या संचालन का स्थान फ्रांसिस 2008 के परिचय में प्रमुख हो जाता है, जिसे फ्रांसिस लिखते हैं

We begin the study of certain less commutative algebraic geometries. … algebraic geometry over -rings can be thought of as interpolating between some derived theories of noncommutative and commutative algebraic geometries. As n increases, these -algebras converge to the derived algebraic geometry of Toën-Vezzosi and Lurie.

एक गैर-अनुवर्ती रिंग का प्रोज

अनुवर्ती बीजगणितीय ज्यामिति में मौलिक निर्माणों में से एक ग्रेडेड अनुवर्ती रिंग का प्रोज निर्माण है। यह निर्माण एक बहुत ही पर्याप्त लाइन बंडल के साथ एक अनुमानित बीजगणितीय विविधता बनाता है जिसका सजातीय समन्वय रिंग मूल रिंग है। विभिन्न प्रकार के अंतर्निहित टोपोलॉजिकल स्पेस के निर्माण के लिए रिंग को स्थानीय बनाने की आवश्यकता होती है, लेकिन उस स्थान पर ढेरों का निर्माण नहीं होता है। जीन पियरे सेरे के एक प्रमेय के अनुसार, एक वर्गीकृत रिंग के प्रोज पर अर्ध-सुसंगत ढेरों को परिमित आयामी कारकों तक रिंग पर वर्गीकृत मॉड्यूल के समान होता है। अलेक्जेंडर ग्रोथेंडिक द्वारा प्रवर्तित टोपोस सिद्धांत के दर्शन का कहना है कि एक स्थान पर ढेरों की श्रेणी अंतरिक्ष के रूप में ही काम कर सकती है। परिणाम स्वरुप , गैर-अनुवर्ती बीजगणितीय ज्यामिति में अधिकांशतः प्रोज को निम्नलिखित फैशन में परिभाषित किया जाता है: चलो आर एक ग्रेडेड 'सी'-बीजगणित हो, और मॉड-आर ग्रेडेड सही आर-मॉड्यूल की श्रेणी को दर्शाता है। चलो F परिमित लंबाई के सभी मॉड्यूल से मिलकर मॉड-आर की उपश्रेणी को निरूपित करता है। प्रोज आर को एफ द्वारा एबेलियन श्रेणी मॉड-आर के भागफल के रूप में परिभाषित किया गया है। समान रूप से, यह मॉड-आर का एक स्थानीयकरण है जिसमें दो मॉड्यूल आइसोमोर्फिक बन जाते हैं, यदि एफ की उचित रूप से चुनी गई वस्तुओं के साथ उनकी सीधी रकम लेने के बाद, वे हैं मॉड-आर में आइसोमॉर्फिक।

यह दृष्टिकोण गैर-अनुवर्ती प्रोजेक्टिव ज्यामिति के सिद्धांत की ओर जाता है। एक गैर-अनुवर्ती चिकनी प्रोजेक्टिव वक्र एक चिकनी अनुवर्ती वक्र बन जाती है, लेकिन एकवचन वक्र या चिकनी उच्च-आयामी रिक्त स्थान के लिए, गैर-अनुवर्ती सेटिंग नई वस्तुओं की अनुमति देती है।

यह भी देखें

टिप्पणियाँ


संदर्भ

  • M. Artin, J. J. Zhang, Noncommutative projective schemes, Advances in Mathematics 109 (1994), no. 2, 228–287, doi.
  • Yuri I. Manin, Quantum groups and non-commutative geometry, CRM, Montreal 1988.
  • Yuri I Manin, Topics in noncommutative geometry, 176 pp. Princeton 1991.
  • A. Bondal, M. van den Bergh, Generators and representability of functors in commutative and noncommutative geometry, Moscow Mathematical Journal 3 (2003), no. 1, 1–36.
  • A. Bondal, D. Orlov, Reconstruction of a variety from the derived category and groups of autoequivalences, Compositio Mathematica 125 (2001), 327–344 doi
  • John Francis, Derived Algebraic Geometry Over -Rings
  • O. A. Laudal, Noncommutative algebraic geometry, Rev. Mat. Iberoamericana 19, n. 2 (2003), 509--580; euclid.
  • Fred Van Oystaeyen, Alain Verschoren, Non-commutative algebraic geometry, Springer Lect. Notes in Math. 887, 1981.
  • Fred van Oystaeyen, Algebraic geometry for associative algebras, Marcel Dekker 2000. vi+287 pp.
  • A. L. Rosenberg, Noncommutative algebraic geometry and representations of quantized algebras, MIA 330, Kluwer Academic Publishers Group, Dordrecht, 1995. xii+315 pp. ISBN 0-7923-3575-9
  • M. Kontsevich, A. Rosenberg, Noncommutative smooth spaces, The Gelfand Mathematical Seminars, 1996--1999, 85--108, Gelfand Math. Sem., Birkhäuser, Boston 2000; arXiv:math/9812158
  • A. L. Rosenberg, Noncommutative schemes, Compositio Mathematica 112 (1998) 93--125, doi; Underlying spaces of noncommutative schemes, preprint MPIM2003-111, dvi, ps; MSRI lecture Noncommutative schemes and spaces (Feb 2000): video
  • Pierre Gabriel, Des catégories abéliennes, Bulletin de la Société Mathématique de France 90 (1962), p. 323-448, numdam
  • Zoran Škoda, Some equivariant constructions in noncommutative algebraic geometry, Georgian Mathematical Journal 16 (2009), No. 1, 183--202, arXiv:0811.4770.
  • Dmitri Orlov, Quasi-coherent sheaves in commutative and non-commutative geometry, Izv. RAN. Ser. Mat., 2003, vol. 67, issue 3, 119–138 (MPI preprint version dvi, ps)
  • M. Kapranov, Noncommutative geometry based on commutator expansions, Journal für die reine und angewandte Mathematik 505 (1998), 73-118, math.AG/9802041.


अग्रिम पठन


बाहरी संबंध