निरंतर गुणांक के साथ रैखिक पुनरावृत्ति

From Vigyanwiki

गणित में (साहचर्य, रैखिक बीजगणित और गतिशील प्रणालियों सहित), निरंतर गुणांक के साथ एक रैखिक पुनरावृत्ति[1]: ch. 17 [2]: ch. 10  (एक रैखिक पुनरावृत्ति संबंध या रैखिक अंतर समीकरण के रूप में भी जाना जाता है) 0 के बराबर समुच्चय एक बहुपद है जो एक चर (गणित) के विभिन्न पुनरावृत्तों में रैखिक होता है - अर्थात, एक अनुक्रम के तत्वों के मानों में संदर्भित होता है। बहुपद की रैखिकता का अर्थ है कि इसके प्रत्येक शब्द की डिग्री 0 या 1 है। एक रैखिक पुनरावृत्ति समय के साथ कुछ चर के विकास को दर्शाता है, वर्तमान असतत समय अवधि या समय में असतत क्षण t के रूप में निरूपित किया जाता है, एक अवधि पहले t − 1 के रूप में निरूपित की जाती है, किन्तु एक अवधि बाद में t + 1, के रूप में निरूपित की जाती है।

इस तरह के एक समीकरण को हल करना t का एक कार्य है, न कि किसी पुनरावृति मानों का, किसी भी समय पुनरावृति का मान देना है। समाधान खोजने के लिए पुनरावृत्तियों के n विशिष्ट मानों (प्रारंभिक स्थितियों के रूप में जाना जाता है) को जानना आवश्यक है, और सामान्य रूप से ये n पुनरावृत्त करता है जो सबसे पुराने हैं। समीकरण या इसके चर को स्थिर कहा जाता है यदि प्रारंभिक स्थितियों के किसी भी समुच्चय से समय के अनंत तक जाने के लिए चर की सीमा उपलब्ध है; इस सीमा को स्थिर अवस्था कहा जाता है।

विभिन्न संदर्भों में अंतर समीकरणों का उपयोग किया जाता है, जैसे कि अर्थशास्त्र में सकल घरेलू उत्पाद, मुद्रास्फीति दर, विनिमय दर आदि जैसे चर के समय के माध्यम से विकास को मॉडल करने के लिए उनका ऐसी उपयोग समय श्रृंखला के मॉडलिंग में किया जाता है क्योंकि इनके मूल्य चर केवल असतत अंतरालों पर मापा जाता है। अर्थमिति अनुप्रयोगों में, रेखीय अंतर समीकरणों को स्वसमाश्रय मॉडल के रूप में स्टोकेस्टिक प्रक्रिया के साथ तैयार किया जाता है। स्वसमाश्रय (एआर) मॉडल और वेक्टर स्वसमाश्रय (वीएआर) और स्वसमाश्रय मूविंग एवरेज (एआरएमए) मॉडल जैसे मॉडल जो एआर को अन्य विशेषताओं के साथ जोड़ते हैं।

परिभाषाएँ

निरंतर गुणांक के साथ एक रैखिक पुनरावृत्ति निम्नलिखित रूप का एक समीकरण है, जिसे पैरामीटर गणितीय कार्यों के संदर्भ में लिखा गया है a1, …, an और b:

या समकक्ष के रूप में

सकारात्मक पूर्णांक पुनरावृत्ति का क्रम कहा जाता है और पुनरावृत्तियों के बीच सबसे लंबे समय के अंतराल को दर्शाता है। समीकरण को सजातीय कहा जाता है यदि b = 0 और गैर-सजातीय यदि b ≠ 0.

यदि समीकरण सजातीय है, तो गुणांक विशेषता बहुपद (सहायक बहुपद या साथी बहुपद भी) निर्धारित करते हैं

जिनकी मूलें पुनरावृत्ति को संतुष्ट करने वाले अनुक्रमों को खोजने और समझने में महत्वपूर्ण भूमिका निभाती हैं।

सजातीय रूप में रूपांतरण

यदि b ≠ 0, समीकरण

विषम कहा जाता है। इस समीकरण को हल करने के लिए इसे बिना किसी स्थिर पद के सजातीय रूप में परिवर्तित करना सुविधाजनक है। यह पहले समीकरण के स्थिर अवस्था मान—एक मान को ज्ञात करके किया जाता है y* ऐसा है कि, यदि n क्रमिक पुनरावृत्त सभी का यह मान था, इसलिए भविष्य के सभी मान होंगे। के सभी मान समुच्चय करके यह मान पाया जाता है y के बराबर y* अंतर समीकरण में, और हल करना, इस प्रकार प्राप्त करना

यह मानते हुए कि भाजक 0 नहीं है। यदि यह शून्य है, तो स्थिर अवस्था उपलब्ध नहीं है।

स्थिर अवस्था को देखते हुए, स्थिर अवस्था से पुनरावृत्तियों के विचलन के संदर्भ में अंतर समीकरण को पुनः लिखा जा सकता है, जैसा कि

जिसका कोई स्थिर शब्द नहीं है, और जिसे अधिक संक्षेप में लिखा जा सकता है

जहाँ x बराबर है yy*. यह सजातीय रूप है।

यदि कोई स्थिर अवस्था नहीं है, तो अंतर समीकरण

इसके समकक्ष रूप के साथ जोड़ा जा सकता है

प्राप्त करने के लिए (दोनों को हल करके b)

जिसमें समान पदों को मूल से एक क्रम उच्च का समांगी समीकरण देने के लिए जोड़ा जा सकता है।

सूक्ष्म क्रमिक के लिए समाधान उदाहरण

विशेषता बहुपद की मूलें पुनरावृत्ति को संतुष्ट करने वाले अनुक्रमों को खोजने और समझने में महत्वपूर्ण भूमिका निभाती हैं। यदि वहाँ अलग मूलें फिर पुनरावृत्ति का प्रत्येक समाधान रूप लेता है

जहां गुणांक पुनरावृत्ति की प्रारंभिक स्थितियों को फिट करने के लिए निर्धारित किया जाता है। जब एक ही रूट कई बार आता है, तो इस सूत्र में समान रूट की दूसरी और बाद की घटनाओं से संबंधित शब्दों को बढ़ती शक्तियों से गुणा किया जाता है . उदाहरण के लिए, यदि विशेषता बहुपद के रूप में गुणनखंड किया जा सकता है , एक ही मूल के साथ तीन बार आ रहा है, तो समाधान रूप ले लेगा

[3]


क्रमिक 1

क्रमिक 1 के लिए, पुनरावृत्ति

समाधान है साथ और सबसे सामान्य उपाय है साथ . विशेषता बहुपद शून्य (विशेषता बहुपद) के बराबर है .

क्रमिक 2

उच्च क्रम के ऐसे पुनरावर्तन संबंधों के समाधान व्यवस्थित तरीकों से पाए जाते हैं, प्रायः इस तथ्य का उपयोग करते हुए कि पुनरावृत्ति के लिए एक समाधान है जब ठीक है विशेषता बहुपद की मूल है। इसे सीधे या जनरेटिंग फलन (औपचारिक शक्ति श्रृंखला) या आव्यूह का उपयोग करके संपर्क किया जा सकता है।

उदाहरण के लिए, प्रपत्र के पुनरावर्तन संबंध पर विचार करें

इसका समान सामान्य रूप का समाधान कब होता है ? इस अनुमान (ansatz) को पुनरावृत्ति संबंध में प्रतिस्थापित करने पर, हम पाते हैं कि

सभी के लिए सच होना चाहिए .

द्वारा विभाजित करना , हम पाते हैं कि ये सभी समीकरण एक ही चीज़ में घटते हैं:

जो कि पुनरावृत्ति संबंध का अभिलाक्षणिक समीकरण है। के लिए हल दो मूलें प्राप्त करने के लिए , : इन मूलों को अभिलाक्षणिक समीकरण के अभिलाक्षणिक मूल या आइगेनमान के रूप में जाना जाता है। मूलों की प्रकृति के आधार पर विभिन्न समाधान प्राप्त होते हैं: यदि ये मूल भिन्न हैं, तो हमारे पास सामान्य समाधान है

जबकि यदि वे समान हैं (जब ), अपने पास

यह सबसे सामान्य समाधान है; दो स्थिरांक और दो दी गई प्रारंभिक स्थितियों के आधार पर चुना जा सकता है और एक विशिष्ट समाधान तैयार करने के लिए।

जटिल एगेंवालूएस ​​​​के प्रकरण में (जो समाधान मापदंडों के लिए जटिल मानों को भी उत्पन्न करता है और ), त्रिकोणमितीय रूप में समाधान को पुनः लिखकर जटिल संख्याओं के उपयोग को समाप्त किया जा सकता है। इस प्रकरण में हम एगेंवालूएस ​​​​के रूप में लिख सकते हैं तभी यह दिखाया जा सकता है

के रूप में पुनः लिखा जा सकता है[4]: 576–585 

जहाँ

यहाँ और (या समकक्ष, और ) वास्तविक स्थिरांक हैं जो प्रारंभिक स्थितियों पर निर्भर करते हैं। का उपयोग करते हुए

कोई ऊपर दिए गए समाधान को सरल बना सकता है

जहाँ और प्रारंभिक शर्तें हैं और

ऐसे में हल निकालने की जरूरत नहीं है और .

सभी स्थितियों में - वास्तविक विशिष्ट आइगेनवेल्यू, वास्तविक डुप्लीकेट आइगेनवैल्यू, और जटिल संयुग्म आइगेनवेल्यू - समीकरण स्थिरता सिद्धांत है (अर्थात, वेरिएबल एक निश्चित मूल्य [विशेष रूप से, शून्य] में अभिसरण करता है) यदि और केवल यदि दोनों एगेंवालूएस ​​पूर्ण मूल्य में एक से सूक्ष्म हैं। इस दूसरे क्रम के प्रकरण में, इस स्थिति को एगेंवालूएस ​​​​पर दिखाया जा सकता है[5] के बराबर होना , जो बराबर है और .

सामान्य समाधान

विशेषता बहुपद और मूलें

सजातीय समीकरण को हल करना

पहले इसकी विशेषता बहुपद को हल करना सम्मिलित है

इसकी विशिष्ट मूलों के लिए λ1, ..., λn. इन मूलों को बीजगणितीय अभिव्यक्ति के लिए हल किया जा सकता है यदि n ≤ 4, लेकिन एबेल-रफिनी प्रमेय। यदि समाधान को संख्यात्मक रूप से उपयोग किया जाना है, तो इस विशिष्ट समीकरण की सभी मूलें संख्यात्मक विधियों द्वारा पाई जा सकती हैं। हालांकि, सैद्धांतिक संदर्भ में उपयोग के लिए यह हो सकता है कि मूलों के बारे में केवल एक ही जानकारी की आवश्यकता है कि क्या उनमें से कोई भी पूर्ण मूल्य में 1 से अधिक या उसके बराबर है।

यह हो सकता है कि सभी मूल वास्तविक संख्याएँ हों या इसके अतिरिक्त कुछ ऐसे भी हो सकते हैं जो सम्मिश्र संख्याएँ हों। बाद के प्रकरण में, सभी जटिल मूलें जटिल संयुग्म जोड़े में आती हैं।

विशिष्ट विशेषता मूलों के साथ समाधान

यदि सभी चारित्रिक मूलें अलग-अलग हैं, तो सजातीय रैखिक पुनरावृत्ति का समाधान

विशेषता मूलों के रूप में लिखा जा सकता है

जहां गुणांक ci प्रारंभिक शर्तों को लागू करके पाया जा सकता है। विशेष रूप से, प्रत्येक समय अवधि के लिए जिसके लिए एक पुनरावृत्त मान ज्ञात होता है, यह मान और इसके संगत मान t में रैखिक समीकरण प्राप्त करने के लिए समाधान समीकरण में प्रतिस्थापित किया जा सकता है n अभी तक अज्ञात पैरामीटर; n ऐसे समीकरण, प्रत्येक प्रारंभिक स्थिति के लिए एक, के लिए रैखिक समीकरणों की प्रणाली हो सकती है n पैरामीटर मान। यदि सभी अभिलाक्षणिक मूल वास्तविक हैं, तो सभी गुणांक मान ci भी वास्तविक होगा; लेकिन अवास्तविक जटिल मूलों के साथ, सामान्यतः इनमें से कुछ गुणांक अवास्तविक भी होंगे।

जटिल हल को त्रिकोणमितीय रूप में बदलना

यदि सम्मिश्र मूल हैं, तो वे संयुग्म युग्मों में आते हैं और इसी प्रकार हल समीकरण में सम्मिश्र पद भी आते हैं। यदि इनमें से दो जटिल पद हैं cjλt
j
और cj+1λt
j+1
, मूलें λj के रूप में लिखा जा सकता है

जहाँ i काल्पनिक इकाई है और M मूलों का निरपेक्ष मान है:

तब समाधान समीकरण में दो जटिल शब्दों को इस रूप में लिखा जा सकता है

जहाँ θ वह कोण है जिसका कोसाइन है α/M और साइन किसकी है β/M; यहाँ अंतिम समानता ने डी मोइवर के सूत्र का उपयोग किया।

अब गुणांक खोजने की प्रक्रिया cj और cj+1 गारंटी देता है कि वे जटिल संयुग्मी भी हैं, जिन्हें इस रूप में लिखा जा सकता है γ ± δi. अंतिम समीकरण में इसका उपयोग करने से यह अभिव्यक्ति समाधान समीकरण में दो जटिल शब्दों के लिए मिलती है:

जिसे इस रूप में भी लिखा जा सकता है

जहाँ ψ वह कोण है जिसका कोसाइन है γ/γ2 + δ2 और साइन किसकी है δ/γ2 + δ2.

चक्रीयता

प्रारंभिक स्थितियों के आधार पर, यहां तक ​​​​कि सभी मूलों के वास्तविक होने पर भी पुनरावृति स्थिर अवस्था मूल्य से ऊपर और नीचे जाने के लिए एक अस्थायी प्रवृत्ति का अनुभव कर सकती है। लेकिन सच्ची चक्रीयता में उतार-चढ़ाव की एक स्थायी प्रवृत्ति सम्मिलित होती है, और यह तब होता है जब कम से कम एक जोड़ी जटिल संयुग्मित विशेषता मूलें होती हैं। इसे सम्मिलित करते हुए समाधान समीकरण में उनके योगदान के त्रिकोणमितीय cos θt और sin θt रूप में देखा जा सकता है।

प्रतिरूप विशेषता मूलों के साथ समाधान

दूसरे क्रम के प्रकरण में, यदि दो मूलें समान हैं (λ1 = λ2), वे दोनों के रूप में निरूपित किया जा सकता है λ और एक समाधान प्रारूप का हो सकता है


आव्यूह प्रारूप में रूपांतरण द्वारा समाधान

एक वैकल्पिक समाधान विधि में परिवर्तित करना सम्मिलित है {{mvar|n}पहले क्रम के आव्यूह अंतर समीकरण के लिए वें क्रम अंतर समीकरण। यह लेखन द्वारा पूरा किया जाता है w1,t = yt, w2,t = yt−1 = w1,t−1, w3,t = yt−2 = w2,t−1, और इसी तरह। फिर मूल एकल nवें क्रम का समीकरण

निम्नलिखित द्वारा प्रतिस्थापित किया जा सकता है n पहले क्रम के समीकरण:

वेक्टर को परिभाषित करना wi जैसा

इसे आव्यूह रूप में रखा जा सकता है

यहाँ A एक n × n आव्यूह जिसमें पहली पंक्ति सम्मिलित है a1, ..., an और अन्य सभी पंक्तियों में एक 1 है, अन्य सभी तत्व 0 हैं, और b पहला तत्व वाला कॉलम वेक्टर है b और इसके बाकी तत्व 0 हैं।

इस आव्यूह समीकरण को लेख आव्यूह अंतर समीकरण में विधियों का उपयोग करके हल किया जा सकता है। सजातीय प्रकरण में yi निम्न त्रिकोणीय आव्यूह का एक पैरा-स्थायी है [6]


जनरेटिंग फलन का उपयोग करके समाधान

पुनरावृत्ति

कार्यों को उत्पन्न करने के सिद्धांत का उपयोग करके हल किया जा सकता है। पहले हम लिखते हैं . पुनरावृत्ति तब निम्न जनरेटिंग फलन समीकरण के बराबर है:

जहाँ अधिक से अधिक डिग्री का बहुपद है प्रारंभिक शर्तों को ठीक करना। इस समीकरण से हम प्राप्त करने के लिए हल कर सकते हैं

दूसरे शब्दों में, सटीक गुणांकों के बारे में चिंता किए बिना, एक तर्कसंगत कार्य के रूप में व्यक्त किया जा सकता है बंद रूप को आंशिक अंश अपघटन के माध्यम से प्राप्त किया जा सकता है। विशेष रूप से, यदि जनरेटिंग फलन के रूप में लिखा गया है

फिर बहुपद सुधार के प्रारंभिक समुच्चय को निर्धारित करता है , भाजक घातीय शब्द निर्धारित करता है , और डिग्री एक साथ अंश के साथ बहुपद गुणांक निर्धारित करें .

अवकल समीकरणों के हल से संबंध

रेखीय अवकल समीकरणों को हल करने की विधि उपरोक्त विधि के समान है—अचर गुणांक वाले रैखिक अवकल समीकरणों के लिए बुद्धिमान अनुमान (ansatz) है जहाँ एक जटिल संख्या है जो अनुमान को अंतर समीकरण में प्रतिस्थापित करके निर्धारित किया जाता है।

यह एक संयोग नहीं है। एक रेखीय अंतर समीकरण के समाधान की टेलर श्रृंखला को ध्यान में रखते हुए:

यह देखा जा सकता है कि श्रृंखला के गुणांक द्वारा दिए गए हैं -वें का व्युत्पन्न बिन्दु पर मूल्यांकन किया गया . अंतर समीकरण इन गुणांकों से संबंधित एक रैखिक अंतर समीकरण प्रदान करता है।

इस तुल्यता का उपयोग एक रेखीय अवकल समीकरण के घात श्रेणी समाधान में गुणांकों के लिए पुनरावृत्ति संबंध को त्वरित रूप से हल करने के लिए किया जा सकता है।

अंगूठे का नियम (उन समीकरणों के लिए जिनमें बहुपद का पहला पद शून्य पर गैर-शून्य है) यह है:

और अधिक सामान्यतः

उदाहरण: समीकरण के टेलर श्रृंखला गुणांकों के लिए पुनरावृत्ति संबंध:

द्वारा दिया गया है

या

यह उदाहरण दिखाता है कि सामान्य अंतर समीकरण कक्षाओं में सिखाई जाने वाली शक्ति श्रृंखला समाधान पद्धति का उपयोग करके सामान्यतः हल की जाने वाली समस्याओं को बहुत आसान तरीके से हल किया जा सकता है।

उदाहरण: अंतर समीकरण

समाधान है

टेलर गुणांकों के एक अंतर समीकरण के लिए अंतर समीकरण का रूपांतरण है

यह देखना आसान है कि -वें का व्युत्पन्न पर मूल्यांकन किया गया है .

जेड-रूपांतरण के साथ हल करना

कुछ अंतर समीकरण - विशेष रूप से, Z-रूपांतरण#रैखिक स्थिर-गुणांक अंतर समीकरण अंतर समीकरण - z-रूपांतरण का उपयोग करके हल किए जा सकते हैं। z-परिणत इंटीग्रल ट्रांसप्रारूप का एक वर्ग है जो अधिक सुविधाजनक बीजगणितीय जोड़तोड़ और अधिक सरल समाधान की ओर ले जाता है। ऐसे प्रकरण हैं जिनमें प्रत्यक्ष समाधान प्राप्त करना लगभग असंभव होगा, फिर भी सोच-समझकर चुने गए अभिन्न परिवर्तन के माध्यम से समस्या को हल करना सीधा है।

स्थिरता

समाधान समीकरण में

वास्तविक विशेषता मूलों वाला एक शब्द 0 के रूप में अभिसरण करता है t अनिश्चित रूप से बड़ा हो जाता है यदि विशेषता मूल का निरपेक्ष मान 1 से कम है। यदि निरपेक्ष मान 1 के बराबर है, तो शब्द स्थिर रहेगा t बढ़ता है यदि रूट +1 है लेकिन यदि रूट -1 है तो दो मानों के बीच उतार-चढ़ाव होगा। यदि मूल का निरपेक्ष मान 1 से अधिक है तो पद समय के साथ बड़ा और बड़ा होता जाएगा। यदि मापांक का निरपेक्ष मान जटिल संयुग्म विशेषता मूलों के साथ शब्दों की एक जोड़ी को कम करने वाले उतार-चढ़ाव के साथ 0 में अभिसरण करेगा M मूल 1 से कम है; यदि मापांक 1 के बराबर है तो संयुक्त शब्दों में निरंतर आयाम में उतार-चढ़ाव बना रहेगा; और यदि मापांक 1 से अधिक है, तो संयुक्त शब्द लगातार बढ़ते परिमाण के उतार-चढ़ाव को दर्शाएगा।

इस प्रकार विकसित चर x 0 पर अभिसरित होगा यदि सभी अभिलाक्षणिक मूलों का परिमाण 1 से कम है।

यदि सबसे बड़े मूल का निरपेक्ष मान 1 है, तो न तो 0 में अभिसरण होगा और न ही अनंत में अपसरण होगा। यदि 1 परिमाण वाली सभी मूलें वास्तविक और सकारात्मक हैं, x उनके निरंतर शब्दों के योग में अभिसरण करेगा ci; स्थिर प्रकरण के विपरीत, यह अभिसरण मूल्य प्रारंभिक स्थितियों पर निर्भर करता है; अलग-अलग शुरुआती बिंदु लंबे समय में अलग-अलग बिंदुओं की ओर ले जाते हैं। यदि कोई रूट -1 है, तो इसका शब्द दो मानों के बीच स्थायी उतार-चढ़ाव में योगदान देगा। यदि इकाई-परिमाण मूलों में से कोई भी जटिल है तो निरंतर-आयाम में उतार-चढ़ाव x बना रहेगा।

अंत में, यदि किसी अभिलाक्षणिक मूल का परिमाण 1 से अधिक है, तब x जैसे-जैसे समय अनंत तक जाता है, अनंत की ओर विचलन करेगा, या तेजी से बड़े सकारात्मक और नकारात्मक मानों के बीच उतार-चढ़ाव करेगा।

कुछ नहीं के एक प्रमेय में कहा गया है कि सभी मूलों का परिमाण 1 (स्थिर स्थिति) से कम है यदि और केवल यदि निर्धारकों की एक विशेष स्ट्रिंग सभी सकारात्मक हैं।[2]: 247 

यदि एक गैर-सजातीय रैखिक अंतर समीकरण को सजातीय रूप में परिवर्तित किया गया है जिसका विश्लेषण ऊपर किया गया है, तो मूल गैर-सजातीय समीकरण की स्थिरता और चक्रीयता गुण वही होंगे जो व्युत्पन्न सजातीय रूप के हैं, अभिसरण के साथ स्थिर प्रकरण स्थिर-अवस्था मूल्य के लिए है y* के अतिरिक्त 0.

यह भी देखें

संदर्भ

  1. Chiang, Alpha (1984). गणितीय अर्थशास्त्र के मौलिक तरीके (Third ed.). New York: McGraw-Hill. ISBN 0-07-010813-7.
  2. 2.0 2.1 Baumol, William (1970). आर्थिक गतिशीलता (Third ed.). New York: Macmillan. ISBN 0-02-306660-1.
  3. Greene, Daniel H.; Knuth, Donald E. (1982), "2.1.1 Constant coefficients – A) Homogeneous equations", Mathematics for the Analysis of Algorithms (2nd ed.), Birkhäuser, p. 17.
  4. Chiang, Alpha C., Fundamental Methods of Mathematical Economics, third edition, McGraw-Hill, 1984.
  5. Papanicolaou, Vassilis, "On the asymptotic stability of a class of linear difference equations," Mathematics Magazine 69(1), February 1996, 34–43.
  6. Zatorsky, Roman; Goy, Taras (2016). "त्रिकोणीय आव्यूहों के परास्थायी और संख्या अनुक्रमों पर कुछ सामान्य प्रमेय". J. Int. Seq. 19: 16.2.2.