पोंसलेट की क्लोजर प्रमेय

From Vigyanwiki
Revision as of 11:58, 18 May 2023 by Manidh (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

n = 3 के लिए पोंसलेट के छिद्र का चित्रण, एक त्रिभुज जो एक वृत्त में अंकित है और दूसरे को घेरता है।

ज्यामिति में, पोंसेलेट संवरण प्रमेय, जिसे पोंसेलेट के उपप्रमेय के रूप में भी जाना जाता है, इसमें कहा गया है कि जब भी बहुभुज एक शांकव खंड में अंकित होता है और दूसरे को परिगत करता है, तो बहुभुज को बहुभुजों के एक अनंत परिवार का हिस्सा होना चाहिए जो कि सभी में अंकित है और एक ही सीमा में दो शांकवों को परिगत करते हैं। [1][2] इसका नाम फ्रांसीसी इंजीनियर और गणितज्ञ जीन-विक्टर पोंसेलेट के नाम पर रखा गया है, जिन्होंने 1822 में इसके बारे में लिखा था;[3] हालाँकि, त्रिकोणीय स्तिथि की खोज काफी पहले 1746 में विलियम चैपल (सर्वेक्षक) सर्वेक्षणकर्ता) द्वारा की गई थी।[4]

पोंसेलेट के छिद्र को एक अण्डाकार वक्र का उपयोग करके तर्क द्वारा सिद्ध किया जा सकता है, जिसका बिंदु शंकु के लिए एक रेखा के स्पर्शरेखा के संयोजन का प्रतिनिधित्व करता है और दूसरे शंकु के साथ उस रेखा का एक प्रतिच्छेद बिंदु है।

कथन

माना C और D दो समतल शांकव हैं। यदि किसी दिए गए n > 2 के लिए, एक n-पक्षीय बहुभुज खोजना संभव है, जो एक साथ C में अंकित है (जिसका अर्थ है कि इसके सभी कोने C पर स्थित हैं) और D के चारों ओर परिचालित हैं (जिसका अर्थ है कि इसके सभी किनारे D की स्पर्शरेखा हैं), तो उनमें से कई को असीम रूप से खोजना संभव है। C या D का प्रत्येक बिंदु एक ऐसे बहुभुज का शीर्ष या स्पर्शरेखा (क्रमशः) है।

यदि शांकव वृत्त हैं, तो वे बहुभुज जो एक वृत्त में अंकित हैं और दूसरे के चारों ओर परिचालित हैं, वे द्विकेंद्रित बहुभुज कहलाते हैं, इसलिए पोंसेलेट के छिद्र के इस विशेष स्तिथि को यह कहकर व्यक्त किया जा सकता है कि प्रत्येक द्विकेंद्रित बहुभुज समान दो वृत्तों के संबंध में द्विकेंद्रित बहुभुजों के एक अनंत परिवार का हिस्सा है। [5]: p. 94 

प्रमाण आलेख

C और D को जटिल प्रक्षेपी तल 'P2' में वक्र के रूप में देखें। सरलता के लिए, मान लें कि C और D अनुप्रस्थ रूप से मिलते हैं (जिसका अर्थ है कि दोनों का प्रत्येक प्रतिच्छेदन बिंदु एक साधारण प्रसंकरण है)। फिर बेज़ाउट के प्रमेय द्वारा, दो वक्रों के प्रतिच्छेदन C ∩ D में चार जटिल बिंदु होते हैं। D में स्वेच्छ बिंदु d के लिए, मान लीजिये ℓd d पर d की स्पर्श रेखा है। X को C × D की उप-विविध होने दें जिसमें (c,d) ऐसा हो कि ℓd c के माध्यम से पारित होता है। c में, (c,d) ∈ X के साथ d की संख्या 1 है यदि c ∈ C ∩ D और अन्यथा 2 है। इस प्रकार प्रक्षेपण XCP1 X को घात 2 आवरण के रूप में प्रस्तुत करता है जो 4 बिंदुओं से ऊपर विस्तारित है, इसलिए X एक अण्डाकार वक्र है (एक बार जब हम X पर एक आधार बिंदु निश्चित कर लेते हैं)। मान लीजिये x का एक सामान्य (c, d) दूसरे बिंदु (c, d) को उसी पहले समन्वय के साथ भेजना सम्मिलित है। एक निश्चित बिंदु के साथ एक दीर्घवृत्ताकार वक्र का कोई भी समावेश, जब समूह नियम में व्यक्त किया जाता है, तो कुछ p के लिए x → p - x का रूप होता है, इसलिए यह रूप है। इसी तरह, प्रक्षेपण XD एक घात 2 आकारिता है, जो c और d दोनों के स्पर्शरेखा के d पर संपर्क बिंदुओं पर विस्तारित होता है, और संबंधित अंतर्वलन कुछ q के लिए x → q − x रूप है। इस प्रकार रचना x पर अनुवाद है। यदि की शक्ति एक निश्चित बिंदु है, वह शक्ति की पहचान होनी चाहिए। c और d की भाषा में वापस अनुवादित, इसका अर्थ है कि यदि एक बिंदु C ∈ C (एक संबंधित d के साथ सुसज्जित) एक कक्षा को उत्पन्न देता है जो बंद हो जाता है (यानी, एक n-गॉन देता है), तो ऐसा हर बिंदु करता है। पतित स्तिथि जिनमें C और D अनुप्रस्थ नहीं हैं, एक सीमा तर्क से अनुसरण करते हैं।







यह भी देखें

संदर्भ

  1. Weisstein, Eric W. "Poncelet's Porism." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/PonceletsPorism.html
  2. King, Jonathan L. (1994). "एक उपाय की तलाश में तीन समस्याएं". Amer. Math. Monthly. 101: 609–628. doi:10.2307/2974690.
  3. Poncelet, Jean-Victor (1865) [1st. ed. 1822]. Traité des propriétés projectives des figures; ouvrage utile à ceux qui s'occupent des applications de la géométrie descriptive et d'opérations géométriques sur le terrain (in français) (2nd ed.). Paris: Gauthier-Villars. pp. 311–317.
  4. Del Centina, Andrea (2016), "Poncelet's porism: a long story of renewed discoveries, I", Archive for History of Exact Sciences, 70 (1): 1–122, doi:10.1007/s00407-015-0163-y, MR 3437893
  5. Johnson, Roger A., Advanced Euclidean Geometry, Dover Publications, 2007 (orig. 1960).
  • Bos, H. J. M.; Kers, C.; Oort, F.; Raven, D. W. "पोंसलेट की क्लोजर प्रमेय". एक्सपोजिशन मैथेमेटिका 5 (1987), no. 4, 289–364.


बाहरी संबंध