प्रतीकात्मक परिपथ विश्लेषण

From Vigyanwiki
Revision as of 15:06, 23 May 2023 by Manidh (talk | contribs)

प्रतीकात्मक सर्किट विश्लेषण स्वतंत्र चर (समय या आवृत्ति), निर्भर चर (वोल्टेज और धाराओं), और सर्किट के साथ इलेक्ट्रिक / इलेक्ट्रॉनिक सर्किट के व्यवहार या विशेषता की गणना करने के लिए सर्किट विश्लेषण की औपचारिक प्रणाली है। तत्वों को प्रतीकों द्वारा दर्शाया गया है।[1][2]

विद्युत/इलेक्ट्रॉनिक परिपथों का विश्लेषण करते समय, हम दो प्रकार के प्रश्न पूछ सकते हैं: निश्चित परिपथ चर (वोल्टेज, धारा (बिजली), प्रतिरोध (बिजली), लाभ (इलेक्ट्रॉनिक्स), आदि) का मान क्या है, कुछ परिपथ चरों के मध्य या किसी परिपथ चर और के मध्य क्या संबंध है सर्किट घटक और आवृत्ति (या समय) क्या है। इस प्रकार के संबंध ग्राफ का रूप ले सकते हैं, जहां सर्किट चर के संख्यात्मक मान बनाम आवृत्ति या घटक मूल्य (उदाहरण ट्रांसफर फ़ंक्शन बनाम आवृत्ति के परिमाण का प्लॉट होगा)।

प्रतीकात्मक सर्किट विश्लेषण उन संबंधों को प्रतीकात्मक रूप में प्राप्त करने से संबंधित है, अर्थात, विश्लेषणात्मक अभिव्यक्ति के रूप में, जहां जटिल आवृत्ति (या समय) और कुछ या सभी सर्किट घटकों को प्रतीकों द्वारा दर्शाया जाता है।

फ़्रीक्वेंसी डोमेन एक्सप्रेशन

फ़्रीक्वेंसी डोमेन में प्रतीकात्मक सर्किट विश्लेषण का सबसे सामान्य कार्य जटिल फ़्रीक्वेंसी में तर्कसंगत फ़ंक्शन के रूप में इनपुट और आउटपुट चर के मध्य संबंध प्राप्त करना है और प्रतीकात्मक चर :

उपरोक्त संबंध को अधिकांशतः नेटवर्क फ़ंक्शन कहा जाता है। भौतिक प्रणालियों के लिए, और में बहुपद हैं वास्तविक गुणांक के साथ:

जहां शून्य हैं और नेटवर्क फ़ंक्शन के ध्रुव हैं; .

जबकि गुणांक उत्पन्न करने के कई विधि हैं और , 5 से उच्च क्रम के बहुपदों के लिए ध्रुवों और शून्यों के लिए सटीक प्रतीकात्मक अभिव्यक्ति प्राप्त करने के लिए कोई प्रणाली उपस्थित नहीं है।

प्रतीकात्मक नेटवर्क कार्यों के प्रकार

प्रतीकों के रूप में कौन से मापदंडों को रखा जाता है, इस पर निर्भर करते हुए, हमारे निकट कई भिन्न- भिन्न प्रकार के प्रतीकात्मक नेटवर्क कार्य हो सकते हैं। यह उदाहरण पर सबसे अच्छा सचित्र है। उदाहरण के लिए, नीचे दिखाए गए आदर्श ऑप एम्प्स के साथ बाईक्वाड फिल्टर सर्किट पर विचार करें। हम आवृत्ति डोमेन में इसके वोल्टेज संप्रेषण (जिसे वोल्टेज लाभ भी कहा जाता है) के लिए सूत्र प्राप्त करना चाहते हैं, .

चित्रा 1: आदर्श opamps के साथ Biquad सर्किट। (यह आरेख सैपविन की योजनाबद्ध कैप्चर सुविधा का उपयोग करके बनाया गया था।)

s के साथ नेटवर्क फ़ंक्शन चर के रूप में

यदि जटिल आवृत्ति एकमात्र चर है, सूत्र इस प्रकार दिखेगा (सरलता के लिए हम संख्यात्मक मानों का उपयोग करते हैं: ):

अर्ध-प्रतीकात्मक नेटवर्क फ़ंक्शन

यदि जटिल आवृत्ति और कुछ सर्किट चर को प्रतीकों (अर्ध-प्रतीकात्मक विश्लेषण) के रूप में रखा जाता है,

पूरी प्रकार प्रतीकात्मक नेटवर्क फ़ंक्शन

यदि जटिल आवृत्ति और सभी सर्किट चर प्रतीकात्मक हैं (पूरी प्रकार से प्रतीकात्मक विश्लेषण), वोल्टेज संप्रेषण द्वारा दिया गया है (यहाँ ):

उपरोक्त सभी भाव सर्किट के संचालन में अंतर्दृष्टि प्राप्त करने और यह समझने में अत्यंत उपयोगी हैं कि प्रत्येक घटक समग्र सर्किट प्रदर्शन में कैसे योगदान देता है। जैसे-जैसे सर्किट का आकार बढ़ता है, वैसे-वैसे ऐसे भावों में शब्दों की संख्या तीव्रता से बढ़ती है। इसलिए, अपेक्षाकृत सरल परिपथों के लिए भी, सूत्र किसी भी व्यावहारिक मूल्य के लिए बहुत लंबे हो जाते हैं। इस समस्या से निपटने की विधि सांकेतिक अभिव्यक्ति से संख्यात्मक रूप से महत्वहीन शब्दों को छोड़ना है, अपरिहार्य त्रुटि को पूर्व निर्धारित सीमा से नीचे रखना है।[3]


भावों का क्रम बनता है

प्रबंधनीय लंबाई के लिए प्रतीकात्मक अभिव्यक्ति को छोटा करने की अन्य संभावना अभिव्यक्ति के अनुक्रम (एसओई) द्वारा नेटवर्क फ़ंक्शन का प्रतिनिधित्व करना है।[4] निःसंदेह, सूत्र की व्याख्या विलुप्त गई है, लेकिन यह दृष्टिकोण दोहराए जाने वाले संख्यात्मक गणनाओं के लिए बहुत उपयोगी है। इस प्रकार के अनुक्रम उत्पन्न करने के लिए सॉफ्टवेयर पैकेज स्टैंस (आंतरिक नोड दमन के माध्यम से प्रतीकात्मक दो-पोर्ट विश्लेषण) विकसित किया गया है।[5] स्टैंस से ​​कई प्रकार केसोए प्राप्त किए जा सकते हैं। उदाहरण के लिए, कॉम्पैक्ट सोए के लिए हमारे बिक्वाद का है

x1 = G5*G3/G6
x2 = -G1-s*C1-G2*x1/(s*C2)
x3 = -G4*G8/x2
Ts = x3/G11

उपरोक्त अनुक्रम में अंश हैं। यदि यह वांछनीय नहीं है (उदाहरण के लिए, जब शून्य से विभाजन दिखाई देते हैं), तो हम भिन्नात्मकसोए उत्पन्न कर सकते हैं:

x1 = -G2*G5
x2 = G6*s*C2
x3 = -G4*x2
x4 = x1*G3-(G1+s*C1)*x2
x5 = x3*G8
x6 = -G11*x4
Ts = -x5/x6

फिर भी अभिव्यक्ति को छोटा करने की विधि बहुपदों का गुणनखंड करना है और . हमारे उदाहरण के लिए यह बहुत सरल है और इसकी ओर जाता है:

Num = G4*G6*G8*s*C2
Den = G11*((G1+s*C1)*G6*s*C2+G2*G3*G5)
Ts = Num/Den

बड़े परिपथों के लिए, तथापि, गुणनखंडन कठिन मिश्रित समस्या बन जाती है और अंतिम परिणाम व्याख्या और संख्यात्मक गणना दोनों के लिए अव्यावहारिक हो सकता है।




यह भी देखें

बाहरी संबंध


संदर्भ

  1. G. Gielen and W. Sansen, Symbolic Analysis for Automated Design of Analog Integrated Circuits. Boston: Kluwer Academic Publishers, 1991.
  2. Labrèche P., presentation: Linear Electrical Circuits:Symbolic Network Analysis, 1977
  3. B. Rodanski, M. Hassoun, "Symbolic Analysis," in The Circuits and Filters Handbook: Fundamentals of Circuits and Filters, 3rd ed., Wai-Kai Chen, Editor. CRC Press, 2009, pp. 25-1 - 25-29.
  4. M. Pierzchala, B. Rodanski, "Generation of Sequential Symbolic Network Functions for Large-Scale Networks by Circuit Reduction to a Two-Port," IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 48, no. 7, July 2001, pp. 906-909.
  5. L.P. Huelsman, "STAINS - Symbolic Two-Port Analysis via Internal Node Suppression," IEEE Circuits & Devices Magazine, March 2002, pp. 3-6.