रॉकर आर्म

From Vigyanwiki
Revision as of 16:31, 24 May 2023 by Manidh (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
रॉकर आर्म, संभवतः एक स्कोडा 120 इंजन से
एक फोर्ड वल्कन वी6 इंजन में 6 स्टैम्प्ड स्टील रॉकर आर्म्स का शीर्ष दृश्य

आंतरिक दहन इंजन के संदर्भ में रॉकर आर्म ऐसा आंतरिक दहन इंजन है जो सामान्यतः पुशरोड की गति को संबंधित करने के लिए इसे सेवन या निकास वाल्व में स्थानांतरित करता है।

ऑटोमोबाइल्स में रॉकर आर्म्स सामान्यतः स्टैम्प्ड स्टील, या एल्युमीनियम से उच्च-रेविंग अनुप्रयोगों में बनाए जाते हैं। कुछ रॉकर आर्म्स (जिन्हें रोलर रॉकर्स कहा जाता है) इनमें संपर्क बिंदु पर उपयोग करने और घर्षण को कम करने के लिए इससे संबंधित संपर्क बिंदुओं पर इसके प्रभाव को सम्मिलित किया जाता है।

अवलोकन

ओवरहेड वाल्व इंजन या ओवरहेड वाल्व (पुशरोड) इंजन के विशिष्ट उपयोगों कि स्थितियों में इंजन के निचले भाग में स्थित कैंम्शाफ्ट पुशरोड को ऊपर की ओर धकेलता है। इस प्रकार पुशरोड का शीर्ष रॉकर आर्म (इंजन के शीर्ष पर स्थित) को ऊपर की ओर दबाता है, जिससे रॉकर आर्म घूमने लगता है। यह घू्र्णन करने वाले रॉकर आर्म के दूसरे छोर को पॉपट वॉल्व के शीर्ष पर नीचे की ओर दबाने का कारण बनता है, जो वाल्व को नीचे की ओर ले जाकर खोलता है।

किसी रोलर रॉकर पर रॉकर आर्म का उपयोग किया जाता है जो मुख्यतः धातु पर उपयोग ना की जाने वाली धातुओं के अतिरिक्त होने वाले घूर्णन और वाल्वों के बीच संपर्क बिंदु पर सुई बीयरिंग (या पुराने इंजनों में सिंगल बॉल (प्रभाव)) का उपयोग करता है। यह वाल्व गाइड के घर्षण, असमानता से उपयोग करने और बेल-माउथिंग को कम करता है।[1] ओवरहेड कैम इंजन में रोलर रॉकर्स का भी उपयोग किया जा सकता है। चूंकि इनमें सामान्यतः रोलर उस बिंदु पर होता है जहां कैम लोब रॉकर से संपर्क करता है, इसके अतिरिक्त इस बिंदु पर जहां रॉकर वाल्व स्टेम से संपर्क करता है।

रोलर टिप द्वारा वाल्व स्टेम के संपर्क के बिंदु पर घर्षण को कम किया जा सकता है। इसी प्रकार की व्यवस्था गति को दूसरे रोलर टिप के माध्यम से दूसरी रॉकर आर्म में स्थानांतरित करती है। यह घूर्णन शाफ्ट के बारे में घूमता है, और गति को टैपटि के माध्यम से वाल्व में स्थानांतरित करता है।

कुछ ओवरहेड कैमशाफ्ट इंजन शॉर्ट रॉकर आर्म्स का उपयोग करते हैं, जिन्हें फिंगर्स भी कहा जाता है, जिसमें वाल्व को खोलने के लिए कैम लोब रॉकर आर्म पर नीचे (ऊपरी स्थान के अतिरिक्त) धक्का देता है। इस प्रकार से घूमने वाली भुजा पर, आधार मध्य के अतिरिक्त अंत में होता है, जबकि कैम भुजाओं के मध्य पर कार्य करता है। इसकी विपरीत दिशा में वाल्व खुलते है। इस प्रकार के घूर्णन करने वाले यंत्र से ओवरहेड कैमशाफ्ट इंजनों पर विशेष रूप से सरल बात हैं,[2] और अधिकांशतः सीधे टैपेट के स्थान पर उपयोग किये जाते हैं। यह रॉकर आर्म कॉन्फ़िगरेशन एसओएचसी इंजनों में कार्यरत रहते है, जैसे कि फोर्ड माॅड्यूलर इंजन 3-वाल्व 2 या फाॅर्ड 5.4 L 3 वोल्ट और फाॅर्ड जीटेक इंजन जीटेक रोकैम (ड्यूराटेक 8वोल्ट) इसका उदाहरण हैं।

घूर्णन अनुपात

घूर्णन अनुपात वाल्व द्वारा यात्रा की गई दूरी को पुशरोड प्रभाव से तय की जाने वाली दूरी से विभाजित करता है। इसका अनुपात रॉकर आर्म के धुरी बिंदु से उस बिंदु तक की दूरी के अनुपात से निर्धारित होता है जहां यह वाल्व को छूता है और वह बिंदु जहां यह पुशरोड/कैमशाफ्ट को छूता है। इस कारण एक से अधिक रॉकर अनुपात अनिवार्य रूप से कैमशाफ्ट लिफ्ट या कैमशाफ्ट की लिफ्ट को बढ़ाता है।

वर्तमान ऑटोमोटिव डिजाइन लगभग 1.5:1 से 1.8:1 के रॉकर आर्म अनुपात का समर्थन करता है। चूंकि प्राचीन समय में 1950 के दशक से पहले कई इंजनों में 1:1 (तटस्थ अनुपात) सहित छोटे धनात्मक अनुपातों का उपयोग किया गया है, और 1 से कम अनुपात (कैम लिफ्ट से छोटे वाल्व लिफ्ट) का भी कई बार उपयोग किया गया है।

सामग्री

उत्पादन की कम लागत के कारण बड़े पैमाने पर उत्पादित कार इंजन पारंपरिक रूप से रॉकर आर्म्स के लिए स्टैम्पिंग (धातुकर्म) स्टील निर्माण का उपयोग करते थे।

रॉकर आर्म्स वाल्वट्रेन के पारस्परिक भार में योगदान करते हैं, जो उच्च इंजन गति (आरपीएम) पर समस्याग्रस्त हो सकता है। इस कारणवश एल्युमीनियम अधिकांशतः इन इंजनों में उपयोग होता है जो उच्च आरपीएम पर कार्य करते हैं। रॉकर आर्म के पूर्णतयः उपयोग किए जाने वाले क्रम (यांत्रिकी) के लिए उन्नत बीयरिंग का उपयोग कभी-कभी उच्च आरपीएम पर चलने वाले इंजनों में भी किया जाता है।

डीजल ट्रक इंजन अक्सर कच्चा लोहा (सामान्यतः नमनीय), या कार्बन स्टील से बने रॉकर आर्म्स का उपयोग करते हैं।

यह भी देखें

  • कैंमशाफ़्ट
  • पॉपट वॉल्व
  • पुशराॅड
  • टप्पेट

संदर्भ

  1. "रोलर रॉकर्स ने समझाया". WhichCar (in English). Retrieved 5 March 2022.
  2. "Valve train: components, types and their function". 9 October 2019.