संसूचक सिद्धांत

From Vigyanwiki
Revision as of 21:35, 17 May 2023 by alpha>Arnikapal

संसूचक सिद्धांत या संकेत संज्ञापन सिद्धांत सूचना-प्रभाव प्रतिरुप कहा जाता है, और यादृच्छिक प्रतिरुप के बीच अंतर करने की क्षमता को मापने का एक साधन है जो सूचना से विचलित होता है (जिसे शोर कहा जाता है, जिसमें पृष्ठभूमि उत्तेजना और यादृच्छिक गतिविधि संसूचक मशीन और ऑपरेटर के तंत्रिका तंत्र सम्मलित है)।

इलेक्ट्रॉनिक्स के क्षेत्र में, सिग्नल पुनः प्राप्ति पृष्ठभूमि से ऐसे प्रतिरुप को अलग करना है।[1] सिद्धांत के अनुसार, निर्धारक जब पता लगाने वाली प्रणाली एक संकेत का पता लगाएगी, और इसकी सीमा का स्तर कहां होगा। यह सिद्धांत समझा सकता है कि प्रभाव सीमा को बदलने से यह समझने की क्षमता प्रभावित होगी, अधिकांशतः यह प्रदर्शित होता है कि सिस्टम उस कार्य, उद्देश्य या लक्ष्य के लिए कितना अनुकूलित है, जिस पर इसका लक्ष्य है। जब पता लगाने वाली प्रणाली एक मानव है, तो अनुभव, अपेक्षाएं, शारीरिक स्थिति और अन्य कारक जैसे लक्षण सीमा को प्रभावित कर सकते हैं। हालांकि वे अहिंसक उत्तेजनाओं को खतरे के रूप में मानने की अधिक संभावना रखते हैं।

संसूचन सिद्धांत में अधिकांश आरंभिक कार्य राडार शोधकर्ताओं द्वारा किया गया था।[2] 1954 तक, सिद्धांत सैद्धांतिक पक्ष पर पूरी तरह से विकसित हो गया था जैसा कि पीटरसन, बर्डसाल और फॉक्स[3] द्वारा वर्णित किया गया था और मनोवैज्ञानिक सिद्धांत की नींव विल्सन पी. टान्नर, डेविड एम. ग्रीन और जॉन ए. स्वेट्स द्वारा भी बनाई गई थी। 1954 में।[4] डिटेक्शन थ्योरी का प्रयोग 1966 में जॉन ए. स्वेट्स और डेविड एम. ग्रीन ने मनोभौतिकी के लिए किया था।[5] ग्रीन और स्वेट्स ने विषयों की वास्तविक संवेदनशीलता और उनकी (संभावित) प्रतिक्रिया पूर्वाग्रहों के बीच भेदभाव करने में असमर्थता के लिए मनोभौतिकी के पारंपरिक नियमों की आलोचना की।[6] जांच सिद्धांत के कई क्षेत्रों में अनुप्रयोग हैं जैसे किसी भी प्रकार के निदान, गुणवत्ता नियंत्रण, दूरसंचार और मनोविज्ञान। अवधारणा कृत्रिम बुद्धि में उपयोग किए जाने वाले विज्ञान और भ्रम मैट्रिक्स में उपयोग किए जाने वाले संकेत-टू-अनुपात के समान है। यह सचेतक प्रबंधन में भी प्रयोग करने योग्य है, जहां महत्वपूर्ण घटनाओं को पृष्ठभूमि शोर से अलग करना महत्वपूर्ण है।

मनोविज्ञान

संकेत संज्ञापन सिद्धांत (SDT) का उपयोग तब किया जाता है जब मनोवैज्ञानिक अनिश्चितता की स्थिति में निर्णय लेने के नियम को मापना चाहते हैं, जैसे कि हम धुंधली परिस्थितियों में या चश्मदीद पहचान के समय दूरियों को कैसे देखते हैं।[7][8] SDT मानता है कि निर्णय निर्माता सूचना का एक निष्क्रिय रिसीवर नहीं है, बल्कि एक सक्रिय निर्णय निर्माता है जो अनिश्चितता की स्थिति में कठिन अवधारणात्मक निर्णय लेता है। धूमिल परिस्थितियों में, हमें यह तय करने के लिए मजबूर किया जाता है कि कोई वस्तु हमसे कितनी दूर है, केवल दृश्य उत्तेजना पर आधारित है जो कोहरे से प्रभावित होती है। चूँकि वस्तु की चमक, जैसे कि ट्रैफिक लाइट, मस्तिष्क द्वारा किसी वस्तु की दूरी को पहचानने के लिए उपयोग की जाती है, और कोहरे से वस्तुओं की चमक कम हो जाती है, हम वस्तु को वास्तव में उससे कहीं अधिक दूर देखते हैं। SDT के अनुसार, चश्मदीदों की पहचान के दौरान, गवाह अपने निर्णय को आधार बनाते हैं कि संदिग्ध अपराधी है या नहीं, संदिग्ध के परिचित स्तर के आधार पर।

संकेत संज्ञापन सिद्धांत को एक डेटा सेट पर लागू करने के लिए जहां उत्तेजना या तो सम्मलित थी या अनुपस्थित थी, और पर्यवेक्षक ने प्रत्येक परीक्षण को उत्तेजना सम्मलित या अनुपस्थित होने के रूप में वर्गीकृत किया, परीक्षणों को चार श्रेणियों में से एक में क्रमबद्ध किया गया है:

रिस्पान्ड "ऐब्सेन्ट" रिस्पान्ड "प्रीज़ेन्ट"
स्टिम्यलस प्रीज़ेन्ट मिस हिट
स्टिम्यलस ऐब्सेन्ट करेक्ट रीजेक्शन फॉल्स अलार्म

इन प्रकार के परीक्षणों के अनुपात के आधार पर, संवेदनशीलता के संख्यात्मक अनुमान संवेदनशीलता सूचकांक d' और A', जैसे आंकड़ों के साथ प्राप्त किए जा सकते हैं। <रेफरी नाम = स्टैनिस्लाव 1999 137-49>Stanislaw, Harold; Todorov, Natasha (March 1999). "सिग्नल डिटेक्शन थ्योरी उपायों की गणना". Behavior Research Methods, Instruments, & Computers. 31 (1): 137–149. doi:10.3758/BF03207704. PMID 10495845.</ref> और प्रतिक्रिया पूर्वाग्रह का अनुमान c और β जैसे आँकड़ों से लगाया जा सकता है।Cite error: Invalid <ref> tag; invalid names, e.g. too many

संकेत संज्ञापन सिद्धांत को स्मृति प्रयोगों पर भी प्रयुक्त किया जा सकता है, जहां विषय परीक्षण के लिए एक अध्ययन सूची में प्रस्तुत किए जाते हैं। इन 'पुरानी' वस्तुओं को उपन्यास, 'नई' वस्तुओं के साथ जोड़कर एक परीक्षण सूची बनाई जाती है जो अध्ययन सूची में नहीं दिखाई देती। प्रत्येक परीक्षण परीक्षण पर विषय 'हां, यह अध्ययन सूची में था' या 'नहीं, यह अध्ययन सूची में नहीं था' का जवाब देगा। अध्ययन सूची में प्रस्तुत वस्तुओं को लक्ष्य कहा जाता है, और नई वस्तुओं को विकर्षण कहा जाता है। किसी लक्ष्य के लिए 'हां' कहना सही होता है, जबकि विचलित करने वाले को 'हां' कहना गलत सचेतक होता है।

रेस्पॉन्ड "नो" रेस्पॉन्ड "यस"
टारगेट मिस हिट
डिसट्रैक्टर करेक्ट रिजेक्शन फॉल्स अलार्म


अनुप्रयोग

संकेत संज्ञापन सिद्धांत का मनुष्यों और तुलनात्मक मनोविज्ञान दोनों में व्यापक अनुप्रयोग है। विषयों में स्मृति, सुदृढीकरण के कार्यक्रम की उत्तेजना विशेषताओं आदि सम्मलित हैं।

संवेदनशीलता या भेदभाव

वैचारिक रूप से, संवेदनशीलता से तात्पर्य यह है कि यह कितना कठिन या आसान है कि पृष्ठभूमि की घटनाओं से लक्ष्य उत्तेजना सम्मलित है। उदाहरण के लिए, एक मान्यता स्मृति प्रतिमान में, लंबे समय तक याद रखने वाले शब्दों का अध्ययन करने से पहले देखे या सुने गए शब्दों को पहचानना आसान हो जाता है। इसके विपरीत, 5 के अतिरिक्त 30 शब्दों को याद रखना भेदभाव को कठिन बना देता है। संवेदनशीलता की गणना के लिए सबसे अधिक उपयोग किए जाने वाले आँकड़ों में से एक तथाकथित संवेदनशीलता सूचकांक या D' है। गैर पैरामीट्रिक उपाय भी हैं, जैसे कि रिसीवर ऑपरेटिंग विशेषता | ROC-वक्र के तहत क्षेत्र है।[6]


पूर्वाग्रह

पूर्वाग्रह वह सीमा है जिस तक एक प्रतिक्रिया दूसरे की तुलना में अधिक संभावित होती है। यही है, एक रिसीवर प्रतिक्रिया देने की अधिक संभावना हो सकती है कि उत्तेजना मौजूद है या प्रतिक्रिया देने की अधिक संभावना है कि उत्तेजना मौजूद नहीं है। पूर्वाग्रह संवेदनशीलता से स्वतंत्र है। उदाहरण के लिए, यदि झूठे अलार्म या चूकने के लिए दंड है, तो यह पूर्वाग्रह को प्रभावित कर सकता है। यदि उत्तेजना एक बमवर्षक है, तो एक चूक (विमान का पता लगाने में विफल) से मृत्यु बढ़ सकती है, इसलिए एक उदार पूर्वाग्रह की संभावना है। इसके विपरीत, लड़का है जो भेड़िया सा रोया (एक झूठा अलार्म) बहुत बार लोगों को प्रतिक्रिया देने की संभावना कम कर सकता है, एक रूढ़िवादी पूर्वाग्रह के लिए आधार।

संकुचित संवेदन

एक अन्य क्षेत्र जो सिग्नल डिटेक्शन थ्योरी से निकटता से संबंधित है, उसे 'कंप्रेस्ड सेंसिंग' (या कंप्रेसिव सेंसिंग) कहा जाता है। संपीड़ित संवेदन का उद्देश्य केवल कुछ मापों से उच्च आयामी लेकिन कम जटिलता वाली संस्थाओं को पुनर्प्राप्त करना है। इस प्रकार, संपीड़ित संवेदन के सबसे महत्वपूर्ण अनुप्रयोगों में से एक उच्च आयामी संकेतों की पुनर्प्राप्ति में है जो केवल कुछ रैखिक मापों के साथ विरल (या लगभग विरल) होने के लिए जाने जाते हैं। संकेतों की पुनर्प्राप्ति में आवश्यक मापों की संख्या Nyquist नमूनाकरण प्रमेय की तुलना में बहुत कम है, बशर्ते संकेत विरल हो, जिसका अर्थ है कि इसमें केवल कुछ गैर-शून्य तत्व शामिल हैं। कंप्रेस्ड सेंसिंग में सिग्नल रिकवरी के विभिन्न तरीके हैं जिनमें आधार खोज, एक्सपैंडर रिकवरी एल्गोरिद्म शामिल हैं[9], CoSaMP[10] और तेज़ नॉन-इटरेटिव एल्गोरिद्म भी।[11] ऊपर उल्लिखित सभी पुनर्प्राप्ति विधियों में, संभाव्य निर्माणों या नियतात्मक निर्माणों का उपयोग करके एक उपयुक्त माप मैट्रिक्स का चयन करना बहुत महत्वपूर्ण है। दूसरे शब्दों में, माप मैट्रिसेस को कुछ विशिष्ट शर्तों को पूरा करना चाहिए जैसे कि 'प्रतिबंधित आइसोमेट्री प्रॉपर्टी' (प्रतिबंधित आइसोमेट्री प्रॉपर्टी) या नलस्पेस संपत्ति | नल-स्पेस प्रॉपर्टी ताकि मजबूत विरल रिकवरी हासिल की जा सके।

गणित

पी(एच1|वाई) > पी(एच2|वाई) / एमएपी परीक्षण

दो परिकल्पनाओं, H1, अनुपस्थित, और H2, उपस्थित के बीच निर्णय लेने के मामले में, एक विशेष अवलोकन, y की स्थिति में, H1 को चुनने के लिए एक शास्त्रीय दृष्टिकोण है जब p(H1|y) > p(H2|y) ) और H2 रिवर्स केस में।[12] इस घटना में कि बाद के गणित में प्रायिकता समान हैं, कोई एक ही विकल्प के लिए डिफ़ॉल्ट चुन सकता है (या तो हमेशा एच 1 चुनें या हमेशा एच 2 चुनें), या यादृच्छिक रूप से एच 1 या एच 2 का चयन कर सकता है। H1 और H2 की A प्राथमिकता और पश्चगामी संभावनाएँ इस पसंद का मार्गदर्शन कर सकती हैं, उदा। हमेशा उच्च प्राथमिकता वाली प्रायिकता वाली परिकल्पना को चुनकर।

इस दृष्टिकोण को लेते समय, आमतौर पर सशर्त संभावनाएं, पी (वाई | एच 1) और पी (वाई | एच 2), और ए प्राथमिकता और बाद की संभावनाएं होती हैं। और . इस मामले में,

,

जहाँ p(y) घटना y की कुल प्रायिकता है,

.

H2 को मामले में चुना जाता है

और H1 अन्यथा।

अक्सर, अनुपात कहा जाता है और कहा जाता है , संभावना समारोह

इस शब्दावली का उपयोग करते हुए, H2 को मामले में चुना जाता है . इसे एमएपी परीक्षण कहा जाता है, जहां एमएपी अधिकतम पश्चवर्ती के लिए खड़ा होता है)।

इस दृष्टिकोण को अपनाने से त्रुटियों की अपेक्षित संख्या कम हो जाएगी।

बेयस मानदंड

कुछ मामलों में, H2 के लिए उचित प्रतिक्रिया देने की तुलना में H1 के लिए उचित प्रतिक्रिया देना कहीं अधिक महत्वपूर्ण है। उदाहरण के लिए, यदि एक अलार्म बजता है, जो H1 (एक आने वाले बमवर्षक के पास परमाणु हथियार ले जा रहा है) का संकेत देता है, तो बमवर्षक को मार गिराना कहीं अधिक महत्वपूर्ण है यदि H1 = TRUE, किसी झूठे निरीक्षण के लिए एक लड़ाकू स्क्वाड्रन भेजने से बचने के लिए अलार्म (यानी, H1 = FALSE, H2 = TRUE) (लड़ाकू स्क्वाड्रनों की एक बड़ी आपूर्ति मानते हुए)। थॉमस बेयस कसौटी ऐसे मामलों के लिए उपयुक्त दृष्टिकोण है।[12]

यहां चार स्थितियों में से प्रत्येक के साथ एक उपयोगिता जुड़ी हुई है:

  • : कोई व्यक्ति H1 और H1 के लिए उपयुक्त व्यवहार के साथ प्रतिक्रिया करता है, यह सच है: लड़ाकू बमवर्षक को नष्ट करते हैं, ईंधन, रखरखाव और हथियारों की लागत खर्च करते हैं, कुछ को मार गिराए जाने का जोखिम उठाते हैं;
  • : कोई व्यक्ति H1 और H2 के लिए उपयुक्त व्यवहार के साथ प्रतिक्रिया करता है, यह सच है: लड़ाकू विमानों को बाहर भेजा गया, ईंधन और रखरखाव की लागत, बमवर्षक स्थान अज्ञात रहता है;
  • : व्यक्ति H2 के लिए उपयुक्त व्यवहार के साथ प्रतिक्रिया करता है और H1 सत्य है: शहर नष्ट हो गया;
  • : व्यक्ति H2 और H2 के लिए उपयुक्त व्यवहार के साथ प्रतिक्रिया करता है, यह सच है: लड़ाकू घर पर रहते हैं, बमवर्षक स्थान अज्ञात रहता है;

जैसा कि नीचे दिखाया गया है, जो महत्वपूर्ण हैं वे अंतर हैं, और .

इसी तरह, चार संभावनाएँ हैं, , , आदि, प्रत्येक मामले के लिए (जो किसी की निर्णय रणनीति पर निर्भर हैं)।

बेयस कसौटी दृष्टिकोण अपेक्षित उपयोगिता को अधिकतम करने के लिए है:

प्रभावी रूप से, कोई योग को अधिकतम कर सकता है,

,

और निम्नलिखित प्रतिस्थापन करें:

कहाँ और प्राथमिक संभावनाएं हैं, और , और प्रेक्षण घटनाओं का क्षेत्र है, y, जिनका जवाब दिया जाता है जैसे कि H1 सत्य है।

और इस तरह बढ़ाकर अधिकतम किया जाता है उस क्षेत्र के ऊपर जहां

यह मामले में H2 तय करके पूरा किया जाता है

और H1 अन्यथा, जहां L(y) तथाकथित संभावना कार्य है।

सामान्य वितरण मॉडल

वह और गीस्लर [13] सामान्य रूप से वितरित उत्तेजनाओं के लिए सिग्नल डिटेक्शन थ्योरी के परिणामों को बढ़ाया, और दो या दो से अधिक श्रेणियों से एकतरफा और बहुभिन्नरूपी सामान्य संकेतों का पता लगाने और वर्गीकृत करने के लिए आदर्श पर्यवेक्षक विश्लेषण और गैर-आदर्श पर्यवेक्षकों के लिए त्रुटि दर और भ्रम मैट्रिक्स की गणना के तरीके निकाले।

यह भी देखें

संदर्भ

  1. T. H. Wilmshurst (1990). Signal Recovery from Noise in Electronic Instrumentation (2nd ed.). CRC Press. pp. 11 ff. ISBN 978-0-7503-0058-2.
  2. Marcum, J. I. (1947). "A Statistical Theory of Target Detection by Pulsed Radar". The Research Memorandum: 90. Retrieved 2009-06-28.
  3. Peterson, W.; Birdsall, T.; Fox, W. (September 1954). "सिग्नल डिटेक्टेबिलिटी का सिद्धांत". Transactions of the IRE Professional Group on Information Theory. 4 (4): 171–212. doi:10.1109/TIT.1954.1057460.
  4. Tanner, Wilson P.; Swets, John A. (1954). "विज़ुअल डिटेक्शन का एक निर्णय लेने वाला सिद्धांत।". Psychological Review. 61 (6): 401–409. doi:10.1037/h0058700. PMID 13215690.
  5. Swets, J.A. (ed.) (1964) Signal detection and recognition by human observers. New York: Wiley[page needed]
  6. 6.0 6.1 Green, D.M., Swets J.A. (1966) Signal Detection Theory and Psychophysics. New York: Wiley. (ISBN 0-471-32420-5)[page needed]
  7. Clark, Steven E.; Benjamin, Aaron S.; Wixted, John T.; Mickes, Laura; Gronlund, Scott D. (2015). "चश्मदीद गवाह की पहचान और आपराधिक न्याय प्रणाली की सटीकता". Policy Insights from the Behavioral and Brain Sciences. 2: 175–186. doi:10.1177/2372732215602267. hdl:11244/49353.
  8. Haw, Ryann Michelle (January 2005). "A theoretical analysis of eyewitness identification: Dual -process theory, signal detection theory and eyewitness confidence". ProQuest Etd Collection for Fiu: 1–98.
  9. Jafarpour, Sina; Xu, Weiyu; Hassibi, Babak; Calderbank, Robert (September 2009). "अनुकूलित विस्तारक ग्राफ़ का उपयोग करके कुशल और मजबूत संपीड़ित संवेदन" (PDF). IEEE Transactions on Information Theory. 55 (9): 4299–4308. doi:10.1109/tit.2009.2025528.
  10. Needell, D.; Tropp, J.A. (2009). "CoSaMP: Iterative signal recovery from incomplete and inaccurate samples". Applied and Computational Harmonic Analysis. 26 (3): 301–321. arXiv:0803.2392. doi:10.1016/j.acha.2008.07.002.
  11. Lotfi, M.; Vidyasagar, M."A Fast Noniterative Algorithm for Compressive Sensing Using Binary Measurement Matrices".
  12. 12.0 12.1 Schonhoff, T.A. and Giordano, A.A. (2006) Detection and Estimation Theory and Its Applications. New Jersey: Pearson Education (ISBN 0-13-089499-0)
  13. Das, Abhranil; Geisler, Wilson (2020). "सामान्य वितरण को एकीकृत और वर्गीकृत करने की एक विधि". arXiv:2012.14331.
  • Coren, S., Ward, L.M., Enns, J. T. (1994) Sensation and Perception. (4th Ed.) Toronto: Harcourt Brace.
  • Kay, SM. Fundamentals of Statistical Signal Processing: Detection Theory (ISBN 0-13-504135-X)
  • McNichol, D. (1972) A Primer of Signal Detection Theory. London: George Allen & Unwin.
  • Van Trees HL. Detection, Estimation, and Modulation Theory, Part 1 (ISBN 0-471-09517-6; website)
  • Wickens, Thomas D., (2002) Elementary Signal Detection Theory. New York: Oxford University Press. (ISBN 0-19-509250-3)


बाहरी संबंध