लिफ्ट गुणांक
द्रव गतिकी में लिफ्ट गुणांक (CL) एक आयाम रहित राशि है जो अंतरिक्ष यान के चारों ओर द्रव घनत्व, द्रव वेग और संबंधित संदर्भ क्षेत्र को उठाने वाले भार द्वारा उत्पन्न उत्थापक बल से संबंधित है। अंतरिक्ष यान फ़ॉइल या एक पूर्ण फ़ॉइल-बेयरिंग वायुयान है जैसे कि स्थिर पंख वाला वायुयान CL शरीर के प्रवाह के कोण का एक कार्य है। इसकी रेनॉल्ड्स संख्या और इसकी रेनॉल्ड्स संख्या खंड लिफ्ट गुणांक cl एक द्वि-आयामी फ़ॉइल अनुप्रस्थ की गतिशील उत्थापक विशेषताओं को संदर्भित करता है। जिसमें संदर्भ क्षेत्र को फ़ॉइल कॉर्ड द्वारा प्रतिस्थापित किया जाता है।[1][2]
परिभाषाएँ
लिफ्ट गुणांक CL द्वारा परिभाषित किया गया है:[2][3]
- ,
जहाँ उत्थापक बल है, संबंधित सतह क्षेत्र है और द्रव गतिज दाब है जो परिवर्तन में द्रव घनत्व और प्रवाह गति से जुड़ा हुआ है। संदर्भ सतह का चुनाव निर्दिष्ट रूप से किया जाना चाहिए क्योंकि यह अपेक्षाकृत यादृच्छिक होता है। उदाहरण मे बेलनाकार रूपरेखा के लिए (स्पेन संबंधी दिशा में एक वायुयान-फ़ॉइल का 3डी बहिर्वेशन) यह सदैव स्पेन संबंधी दिशा में उन्मुख होता है। लेकिन वायुगतिकी और वायुयान-फ़ॉइल सिद्धांत में सतह को उत्पन्न करने वाली दूसरी धुरी सामान्यतः कॉर्डवाइज़ दिशा होती है:
जिसके परिणामस्वरूप गुणांक होता है:
जबकि मोटे वायुयान-फ़ॉइल और समुद्री गतिकी के लिए, दूसरी धुरी को कभी-कभी चौड़ाई की दिशा में लिया जाता है:
जिसके परिणामस्वरूप एक अलग गुणांक होता है:
इन दो गुणांकों के बीच का अनुपात चौड़ाई अनुपात है:
लिफ्ट गुणांक को लिफ्टिंग-रेखा सिद्धांत सिद्धांत का उपयोग करके अनुमानित किया जा सकता है।[4] और पूर्ण समतल विन्यास के टर्मिनल परीक्षण में संख्यात्मक रूप से गणना या मापा जाता है।
धारा लिफ्ट गुणांक
लिफ्ट गुणांक का उपयोग वायुयान-फ़ॉइल के किसी विशेष आकार (या अनुप्रस्थ काट) की विशेषता के रूप में भी किया जा सकता है। इस अनुप्रयोग में इसे अनुप्रस्थ लिफ्ट गुणांक कहा जाता है। किसी विशेष वायुयान-फ़ॉइल अनुप्रस्थ के लिए अनुप्रस्थ लिफ्ट गुणांक और आक्रमण के कोण के बीच संबंध को प्रदर्शित करना सामान्य है। अनुप्रस्थ लिफ्ट गुणांक और संकर्षण गुणांक के बीच संबंध प्रदर्शित करने के लिए भी यह उपयोगी है।[5]
अनुप्रस्थ लिफ्ट गुणांक अनंत अवधि और गैर-भिन्न अनुप्रस्थ काट के एक पंख पर द्वि-आयामी प्रवाह पर आधारित होता है। इसलिए उत्थापक स्पेन संबंधी प्रभावों से स्वतंत्र है और के संदर्भ में पंख की प्रति इकाई अवधि को उत्थापक बल के रूप में परिभाषित किया गया है:
जहां L वह संदर्भ लंबाई है जिसे सदैव निर्दिष्ट किया जाना चाहिए कि वायुगतिकी और वायुयान-फ़ॉइल सिद्धांत में सामान्यतः वायुयान-फ़ॉइल कॉर्ड को चुना जाता है, जबकि समुद्री गतिकी में और स्ट्रट्स (अतरक) के लिए सामान्यतः चौड़ाई को चुना जाता है। ध्यान दें कि यह सीधे संकर्षण गुणांक के अनुरूप है क्योंकि तार की "क्षेत्र प्रति इकाई अवधि" के रूप में व्याख्या की जा सकती है।
आक्रमण के दिए गए कोण के लिए की गणना लगभग वायुयान-फ़ॉइल सिद्धांत का उपयोग करके संख्यात्मक रूप से गणना की जाती है।[6] या परिमित-लंबाई परीक्षण भाग पर टर्मिनल परीक्षणों से निर्धारित होती है, जिसमें तीन-आयामी प्रभावों को सुधारने के लिए डिज़ाइन किया गया अंत-प्लेट होता है। आक्रमण के कोण CL के प्लॉट सभी वायुयान-फ़ॉइल के लिए सामान्यतः समान आकार दिखाते हैं। लेकिन विशेष संख्याएं अलग-अलग होती है। वे उत्थापन प्रवणता के रूप में जाने वाले ढाल के साथ हमले के बढ़ते कोण के साथ लिफ्ट गुणांक में लगभग रैखिक वृद्धि दिखाते हैं। किसी भी आकार के पतले वायुयान-फ़ॉइल के लिए उत्थापक स्लोप π2/90 ≃ 0.11 प्रति डिग्री है। उच्च कोणों पर अधिकतम बिंदु तक पहुँच जाता है, जिसके बाद लिफ्ट गुणांक कम हो जाता है। जिस कोण पर अधिकतम लिफ्ट गुणांक होता है, वह वायुयान-फ़ॉइल का स्टाल कोण होता है, जो एक विशिष्ट वायुयान-फ़ॉइल पर लगभग 10 से 15 डिग्री होता है।
रेनॉल्ड्स संख्या के बढ़ते मानो के साथ किसी दिए गए प्रोफ़ाइल के लिए स्टाल कोण भी बढ़ रहा है, उच्च गति पर वास्तव में स्टाल की स्थिति में देरी के लिए प्रवाह प्रोफ़ाइल से जुड़ा रहता है।[7][8] इस कारण से कभी-कभी सिम्युलेटेड वास्तविक जीवन की स्थिति की तुलना में कम रेनॉल्ड्स संख्या में किए गए पवन सुरंग परीक्षण कभी-कभी रूढ़िवादी प्रतिक्रिया दे सकते हैं, जो प्रोफाइल स्टॉल को कम करके आंकते हैं।
सममित वायुयान-फ़ॉइल्स में CL अक्ष के बारे में हमले सममित के CL बनाम कोण के प्लॉट होते हैं, लेकिन धनात्मक कैम्बर के साथ किसी भी एयरफोइल के लिए, यानी विषम, ऊपर से उत्तल, शून्य से कम हमले के कोणों के साथ एक छोटा लेकिन धनात्मक लिफ्ट गुणांक होता है। अर्थात वह कोण जिस पर cl = 0 ऋणात्मक होता है। हमले के शून्य कोण पर ऐसे वायुयान-फ़ॉइल पर ऊपरी सतह पर दाब निचली सतह की तुलना में कम होता है।
यह भी देखें
- लिफ्ट संकर्षण अनुपात
- संकर्षण गुणांक
- फॉयल (द्रव यांत्रिकी)
- अक्षनतिक (पिचिंग) आघूर्ण
- परिसंचरण नियंत्रण विभाग
- शून्य उत्थापन अक्ष
टिप्पणियाँ
- ↑ Clancy, L. J. (1975). वायुगतिकी. New York: John Wiley & Sons. Sections 4.15 & 5.4.
- ↑ 2.0 2.1 Abbott, Ira H., and Doenhoff, Albert E. von: Theory of Wing Sections. Section 1.2
- ↑ Clancy, L. J.: Aerodynamics. Section 4.15
- ↑ Clancy, L. J.: Aerodynamics. Section 8.11
- ↑ Abbott, Ira H., and Von Doenhoff, Albert E.: Theory of Wing Sections. Appendix IV
- ↑ Clancy, L. J.: Aerodynamics. Section 8.2
- ↑ Katz, J. (2004). रेस कार एरोडायनामिक्स. Cambridge, MA: Bentley Publishers. p. 93. ISBN 0-8376-0142-8.
- ↑ Katz, J; Plotkin, A (2001). Low-Speed Aerodynamics: From Wing Theory to Panel Methods. Cambridge University Press. p. 525.
संदर्भ
- L. J. Clancy (1975): Aerodynamics. Pitman Publishing Limited, London, ISBN 0-273-01120-0
- Abbott, Ira H., and Doenhoff, Albert E. von (1959): Theory of Wing Sections, Dover Publications New York, # 486-60586-8