कहां ∇2 लाप्लास ऑपरेटर (या ''लाप्लासियन'') है, k2 अभिलक्षणिक मान है, और f (अभिलक्षणिक) फलन है। जब समीकरण तरंगों पर लागू होता है, kतरंग संख्या के रूप में जाना जाता है। हेल्महोल्त्ज़ समीकरण में भौतिकी में विभिन्न प्रकार के अनुप्रयोग हैं, जिसमें तरंग समीकरण और प्रसार समीकरण सम्मिलित हैं, और इसका अन्य विज्ञानों में उपयोग होता है।
हेल्महोल्त्ज़ समीकरण प्रायः अंतरिक्ष और समय दोनों में आंशिक अवकल समीकरणों (पीडीई) से जुड़ी भौतिक समस्याओं के अध्ययन में उत्पन्न होता है। हेल्महोल्त्ज़ समीकरण, जो तरंग समीकरण के एक समय-स्वतंत्र रूप का प्रतिनिधित्व करता है, विश्लेषण की जटिलता को कम करने के लिए चर के पृथक्करण की तकनीक को लागू करने का परिणाम है।
उदाहरण के लिए, तरंग समीकरण पर विचार करें
चरों का पृथक्करण यह मानकर प्रारम्भ होता है कि तरंग फलन u(r, t) असलियत में वियोज्य है:
इस रूप को तरंग समीकरण में प्रतिस्थापित करने और फिर सरल करने पर, हम निम्नलिखित समीकरण प्राप्त करते हैं:
ध्यान दें कि बाईं ओर का व्यंजक केवल r पर निर्भर करता है, जबकि दाएँ पक्ष का व्यंजक केवल t पर निर्भर करता है। फलस्वरूप, यह समीकरण सामान्य स्थिति में मान्य है यदि और केवल यदि समीकरण के दोनों पक्ष समान स्थिर मान के बराबर हैं। यह तर्क चरों को अलग करके रैखिक आंशिक अवकल समीकरणों को हल करने की तकनीक में महत्वपूर्ण है। इस अवलोकन से हमें दो समीकरण प्राप्त होते हैं, एक A(r) के लिए, दूसरे T(t) के लिए:
जहां हमने व्यापकता को खोए बिना स्थिरांक के मान के लिए −k2 व्यंजक को चुना है। स्थिरांक के मान के लिए। (यह किसी भी स्थिरांक k को पृथक्करण स्थिरांक के रूप में उपयोग करने के लिए समान रूप से मान्य है; −k2 केवल परिणामी समाधानों में सुविधा के लिए ही चुना जाता है।)
पहले समीकरण को पुनर्व्यवस्थित करने पर, हम हेल्महोल्ट्ज़ समीकरण प्राप्त करते हैं:
इसी तरह, प्रतिस्थापन करने के बाद ω = kc, जहाँ kतरंग संख्या है, और ωकोणीय आवृत्ति (एकवर्णीय क्षेत्र मानकर) है, तो दूसरा समीकरण बन जाता है
अब हमारे पास स्थानिक चर r के लिए हेल्महोल्त्ज़ का समीकरण और समय में एक दूसरे क्रम का साधारण अवकल समीकरण है। समय में समाधान ज्या और कोज्या फलनों का एक रैखिक संयोजन होगा, जिसका सटीक रूप प्रारंभिक स्थितियों से निर्धारित होता है, जबकि अंतरिक्ष में समाधान का रूप सीमा स्थितियों पर निर्भर करेगा। वैकल्पिक रूप से, समाकल रूपांतरण, जैसे लाप्लास या फूरियर रूपांतरण, का उपयोग प्रायः अतिपरवलयिक पीडीई को हेल्महोल्ट्ज़ समीकरण के रूप में बदलने के लिए उपयोग किया जाता है।
तरंग समीकरण से इसके संबंध के कारण, हेल्महोल्त्ज़ समीकरण भौतिकी के ऐसे क्षेत्रों में समस्याओं में उत्पन्न होता है जैसे विद्युत चुम्बकीय विकिरण, भूकंप विज्ञानऔर ध्वनिकी का अध्ययन।
चरों के पृथक्करण का उपयोग करके हेल्महोल्ट्ज़ समीकरण को हल करना
स्थानिक हेल्महोल्ट्ज़ समीकरण का समाधान:
चरों के पृथक्करण का उपयोग करके सरल ज्यामिति के लिए प्राप्त किया जा सकता है।
कंपन झिल्ली
कंपन स्ट्रिंग का द्वि-आयामी एनालॉग कंपन झिल्ली है, जिसके किनारों को गतिहीन होने के लिए जकड़ा जाता है। हेल्महोल्ट्ज़ समीकरण को 19वीं शताब्दी में कई बुनियादी आकृतियों के लिए हल किया गया था: 1829 में सिमोन डेनिस पोइसन द्वारा आयताकार झिल्ली, 1852 में गेब्रियल लैम द्वारा समबाहु त्रिभुज, और 1862 में अल्फ्रेड क्लेबश द्वारा गोलाकार झिल्ली। अण्डाकार ड्रमहेड का अध्ययन एमिले मैथ्यू द्वारा किया गया था। जिससे मैथ्यू के अवकल समीकरण का नेतृत्व हुआ।
यदि किसी आकृति के किनारे सीधी रेखा खंड हैं, तो एक समाधान केवल समाकलनीय या बंद रूप में जानने योग्य है, यदि यह समतल तरंगों के परिमित रैखिक संयोजन के रूप में अभिव्यक्त होता है जो सीमा की स्थिति को पूरा करता है (सीमा पर शून्य, यानी, झिल्ली जकड़ी हुई)।
यदि डोमेन त्रिज्या a का एक वृत्त है, तो ध्रुवीय निर्देशांक r और θ परिचय देना उचित है. हेल्महोल्ट्ज़ समीकरण रूप लेता है
हम सीमा अनुबंध लगा सकते हैं कि A अगर लुप्त हो जाता है यदि r = a; इस प्रकार
चरों के पृथक्करण की विधि प्रपत्र के परीक्षण समाधान की ओर ले जाती है
कहां Θ अवधि 2π के आवधिक होना चाहिए। इससे यह होता है
यह आवधिकता की स्थिति से निम्नानुसार है
और कि n पूर्णांक होना चाहिए। रेडियल घटक R का रूप है
जहां बेसेल फलन Jn(ρ) बेसेल के समीकरण को संतुष्ट करता है
और ρ = kr। रेडियल फलन Jn में n के प्रत्येक मान के लिए अपरिमित रूप से अनेक मूल होते हैं, जिन्हें ρm,n द्वारा दर्शाया गया है। सीमा अनुबंध है कि A लुप्त हो जाता है जहां r = a संतुष्ट हो जाएगा यदि संबंधित तरंगों को दिया जाता है
सामान्य समाधान A तब Jn(km,nr) और nθ की ज्या (या कोसाइन) के फिर उत्पादों को शामिल करने वाली अनुबंधों की सामान्यीकृत फूरियर श्रृंखला का रूप लेता है। ये समाधान एक वृत्ताकार ड्रमहेड के कंपन के तरीके हैं।
त्रि-आयामी समाधान
गोलाकार निर्देशांक में समाधान है:
यह समाधान तरंग समीकरण और प्रसार समीकरण के स्थानिक समाधान से उत्पन्न होता है यहां jℓ(kr) और yℓ(kr) गोलाकार बेसेल फलन हैं, और Ym ℓ(θ, φ)गोलाकार हार्मोनिक्स हैं (अब्रामोविट्ज़ और स्टेगुन, 1964)। ध्यान दें कि ये प्रपत्र सामान्य समाधान हैं, और किसी विशिष्ट स्थिति में उपयोग करने के लिए सीमा अनुबंधों को निर्दिष्ट करने की आवश्यकता होती है। अनंत बाहरी डोमेन के लिए, विकिरण की स्थिति भी आवश्यक हो सकती है (सोमरफेल्ड, 1949)।
लेखन r0 = (x, y, z) फलन A(r0) स्पर्शोन्मुखता है
जहां फलन f प्रकीर्णन आयाम कहा जाता है और u0(r0) प्रत्येक सीमा बिंदु r0 पर A का मान है।
हेल्महोल्ट्ज़ समीकरण के उपाक्षीय सन्निकटन में,[1] जटिल आयामA रूप में अभिव्यक्त किया जाता है
जहाँ u जटिल-मूल्यवान आयाम का प्रतिनिधित्व करता है जो घातीय कारक द्वारा दर्शाए गए ज्यावक्रीय समतल तरंग को नियंत्रित करता है। फिर एक उपयुक्त धारणा के तहत, u लगभग हल करता है
जहाँ लाप्लास संकारक का अनुप्रस्थ भाग है।
प्रकाशिकी के विज्ञान में इस समीकरण के महत्वपूर्ण अनुप्रयोग हैं, जहाँ यह ऐसे समाधान प्रदान करता है जो परवलय तरंगों या गाऊसी बीम के रूप में विद्युत चुम्बकीय तरंगों (प्रकाश) के प्रसार का वर्णन करता है। अधिकांश लेज़र ऐसे बीम उत्सर्जित करते हैं जो इस रूप को लेते हैं।
धारणा जिसके तहत पैराएक्सियल सन्निकटन मान्य है, आयाम फलन u का z व्युत्पन्न z का धीरे-धीरे बदलता फलन है :
यह स्थिति कहने के बराबर है कि तरंग वेक्टर k के बीच और ऑप्टिकल अक्ष z के बीच कोण θ छोटा है: θ ≪ 1.
हेल्महोल्ट्ज़ समीकरण के उपाक्षीय रूप को हेल्महोल्ट्ज़ समीकरण के सामान्य रूप में जटिल आयाम के लिए उपर्युक्त अभिव्यक्ति को निम्नानुसार प्रतिस्थापित करके पाया जाता है:
विस्तार और रद्दीकरण से निम्नलिखित प्राप्त होते हैं:
ऊपर बताई गई उपाक्षीय असमानता के कारण, ∂2u/∂z2 शब्द k·∂u/∂z पद की तुलना में उपेक्षित है। इससे उपाक्षीय हेल्महोल्ट्ज समीकरण प्राप्त होता है। u(r) = A(r) e−ikz को प्रतिस्थापित करने पर मूल जटिल आयाम A के लिए पराक्षीय समीकरण देता है:
फ़्रेस्नेल विवर्तन समाकल उपाक्षीय हेल्महोल्ट्ज़ समीकरण का एक सटीक समाधान है।[2]
विषम हेल्महोल्ट्ज़ समीकरण
विषम हेल्महोल्ट्ज़ समीकरण समीकरण है
जहाँ ƒ : Rn → Cकॉम्पैक्ट समर्थन वाला एक फलन है, और n = 1, 2, 3. यह समीकरण स्क्रीन किए गए पोइसन समीकरण के समान है, और समान होगा यदि धन चिह्न (k शब्द के सामने) को ऋणात्मक चिह्न में बदल दिया गया।
इस समीकरण को विशिष्ट रूप से हल करने के लिए, अनंत पर एक सीमा स्थिति निर्दिष्ट करने की आवश्यकता है, जो प्रायः सोमरफेल्ड विकिरण स्थिति है
in
spatial dimensions, for all angles (i.e. any value of ). Here where are the coordinates of the vector .
With this condition, the solution to the inhomogeneous Helmholtz equation is
इस अनुबंध के साथ, अमानवीय हेल्महोल्ट्ज़ समीकरण का हल घुमाव है
(ध्यान दें कि यह इंटीग्रल वास्तव में एक परिमित क्षेत्र पर है, क्योंकि f कॉम्पैक्ट समर्थन है)। यहां, G इस समीकरण का ग्रीन का कार्य है, अर्थात्, विषम हेल्महोल्ट्ज़ समीकरण का समाधान f डिराक डेल्टा फलन को बराबर करना, इसलिए G संतुष्ट
हरे रंग के कार्य के लिए व्यंजक आयाम पर निर्भर करता है n अंतरिक्ष का। किसी के पास
के लिए n = 1,
के लिए n = 2,[3] कहां H(1) 0 एक बेसेल फलन है # हैंकेल फलन : H.CE.B1, और
के लिए n = 3. ध्यान दें कि हमने सीमा अनुबंध को चुना है जिसके लिए ग्रीन का कार्य एक आउटगोइंग वेव है |x| → ∞.
यह भी देखें
लाप्लास का समीकरण (हेल्महोल्ट्ज़ समीकरण का एक विशेष मामला)
वीइल विस्तार
टिप्पणियाँ
↑J. W. Goodman. फूरियर ऑप्टिक्स का परिचय (2nd ed.). pp. 61–62.
Riley, K. F.; Hobson, M. P.; Bence, S. J. (2002). "Chapter 19". Mathematical methods for physics and engineering. New York: Cambridge University Press. ISBN978-0-521-89067-0.
Riley, K. F. (2002). "Chapter 16". Mathematical Methods for Scientists and Engineers. Sausalito, California: University Science Books. ISBN978-1-891389-24-5.
Saleh, Bahaa E. A.; Teich, Malvin Carl (1991). "Chapter 3". Fundamentals of Photonics. Wiley Series in Pure and Applied Optics. New York: John Wiley & Sons. pp. 80–107. ISBN978-0-471-83965-1.
Sommerfeld, Arnold (1949). "Chapter 16". Partial Differential Equations in Physics. New York: Academic Press. ISBN978-0126546569.
Howe, M. S. (1998). Acoustics of fluid-structure interactions. New York: Cambridge University Press. ISBN978-0-521-63320-8.