होलोमोर्फिक कार्यों की विश्लेषणात्मकता

From Vigyanwiki

जटिल विश्लेषण में, सम्मिश्र चर का एक संमिश्र मान फलन f:

जटिल विश्लेषण के सबसे महत्वपूर्ण प्रमेयों में से एक यह है कि होलोमार्फिक फलन वैश्लेषिक और विपर्येण हैं। इस प्रमेय के परिणाम हैं

  • पहचान प्रमेय कि दो होलोमोर्फिक कार्य जो एक अनंत सेट के हर बिंदु पर सहमत होते हैं एक समारोह के अपने डोमेन के चौराहे के अंदर एक संचय बिंदु के साथ भी उनके डोमेन के हर जुड़े हुए खुले उपसमुच्चय में हर जगह सहमत होते हैं जिसमें सबसेट होता है , और
  • तथ्य यह है कि, चूंकि शक्ति श्रृंखला असीम रूप से भिन्न होती है, इसलिए होलोमोर्फिक कार्य भी होते हैं (यह वास्तविक भिन्न कार्यों के मामले के विपरीत है), और
  • तथ्य यह है कि अभिसरण की त्रिज्या हमेशा केंद्र से दूरी होती है निकटतम गैर-हटाने योग्य गणितीय विलक्षणता के लिए; यदि कोई विलक्षणता नहीं है (अर्थात, यदि एक संपूर्ण कार्य है), तो अभिसरण की त्रिज्या अनंत है। कड़ाई से बोलना, यह प्रमेय का परिणाम नहीं है, बल्कि प्रमाण का उप-उत्पाद है।
  • कॉम्प्लेक्स प्लेन पर कोई टक्कर समारोह पूरा नहीं हो सकता। विशेष रूप से, किसी भी जुड़े हुए सेट पर जटिल विमान के खुले सबसेट पर, उस सेट पर परिभाषित कोई बम्प फ़ंक्शन नहीं हो सकता है जो सेट पर होलोमोर्फिक हो। जटिल कई गुना के अध्ययन के लिए इसके महत्वपूर्ण प्रभाव हैं, क्योंकि यह एकता के विभाजन के उपयोग को रोकता है। इसके विपरीत एकता का विभाजन एक उपकरण है जिसका उपयोग किसी वास्तविक कई गुना पर किया जा सकता है।

प्रमाण

तर्क, पहले कॉची द्वारा दिया गया, कॉची के समाकल सूत्र और व्यंजक की घात श्रेणी प्रसार पर निर्भर करता है

बता दें कि पर केंद्रित एक खुली डिस्क हो और मान लीजिए बंद होने वाले खुले पड़ोस के भीतर हर जगह अलग-अलग है . होने देना सकारात्मक रूप से उन्मुख (यानी, वामावर्त) वृत्त हो जो की सीमा है और जाने में एक बिंदु हो . कॉची के समाकलन सूत्र से प्रारंभ करके, हमारे पास है

अभिन्न और अनंत योग का आदान-प्रदान उसी को देखकर उचित है पर आबद्ध है कुछ सकारात्मक संख्या से , जबकि सभी के लिए में

कुछ सकारात्मक के लिए भी। इसलिए हमारे पास है

पर , और जैसा कि वीयरस्ट्रैस एम-टेस्ट दिखाता है कि श्रृंखला समान रूप से अभिसरण करती है , योग और समाकल को आपस में बदला जा सकता है।

कारक के रूप में एकीकरण के चर पर निर्भर नहीं करता है , इसे उपज के लिए फैक्टर किया जा सकता है

जिसमें एक शक्ति श्रृंखला का वांछित रूप है :

गुणांक के साथ


टिप्पणियाँ

  • चूँकि घात श्रेणी को पद-वार (टर्म-वाइज़) अवकलित किया जा सकता है, उपरोक्त तर्क को विपरीत दिशा में लागू करने और
    के लिए घात श्रेणी व्यंजक
    देती है| यह अवकलज के लिए कॉची का समाकल सूत्र है। अतः ऊपर प्राप्त घात श्रेणी की टेलर श्रेणी है|
  • तर्क काम करता है, अगर कोई भी बिंदु है जो केंद्र के पास है, की तुलना में कोई सिंगयुलैरीटी है| इसलिए, टेलरश्रेणी के अभिसरण की त्रिज्या से निकटतम सिंगयुलैरीटी की दूरी से छोटी नहीं हो सकती है (न ही यह बड़ी हो सकती है, क्योंकि घात श्रेणी में अभिसरण के अपने वृत्तों के आंतरिक भाग में कोई सिंगयुलैरीटी नहीं है)।
  • आइडेन्टिटी प्रमेय की एक विशेष स्थिति पूर्ववर्ती टिप्पणी से अनुसरण करती है। यदि दो होलोमॉर्फिक फलन खुले प्रतिवेश (संभवतः काफी छोटे) पर मान लेते हैं का , तो वे खुली डिस्क पर सम्पाती होते हैं, जहां , से निकटतम सिंगयुलैरीटी की दूरी है।

बाहरी संबंध

  • "Existence of power series". PlanetMath.