रसद वितरण

From Vigyanwiki
Revision as of 16:49, 25 May 2023 by Manidh (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Logistic distribution
Probability density function
Standard logistic PDF
Cumulative distribution function
Standard logistic CDF
Parameters location (real)
scale (real)
Support
PDF
CDF
Quantile
Mean
Median
Mode
Variance
Skewness
Ex. kurtosis
Entropy
MGF
for
and is the Beta function
CF

संभाव्यता सिद्धांत और सांख्यिकी में, तार्किक वितरण एक सतत संभाव्यता वितरण है। इसका संचयी वितरण फलन तार्किक फलन है, जो संभार तन्त्र परावर्तन और अग्रसर तंत्रिका - तंत्र में दिखाई देता है। यह आकार में सामान्य वितरण जैसा दिखता है लेकिन इसमें भारी पूंछ (उच्च कुकुदता) होती है। तार्किक वितरण तुकी लैम्ब्डा वितरण की एक विशेष घटना है।

विशिष्टता

संभाव्यता घनत्व फलन

जब स्थान पैरामीटर μ, 0 है और स्केल पैरामीटर s, 1 है, तो तार्किक वितरण का प्रायिकता घनत्व फलन द्वारा दिया जाता है

इस प्रकार सामान्य तौर पर घनत्व है:

चूँकि यह फलन अतिपरवलयिक छेदक फलन "सेच" के वर्ग के संदर्भ में व्यक्त किया जा सकता है, इसे कभी-कभी सेच-वर्ग (डी) वितरण के रूप में संदर्भित किया जाता है।[1] (यह भी देखें: अतिपरवलयिक छेदक वितरण)।

संचयी वितरण फलन

तार्किक वितरण को इसका नाम इसके संचयी वितरण फलन से मिलता है, जो तार्किक फलन के परिवार का एक उदाहरण है। तार्किक वितरण का संचयी वितरण फलन भी अतिपरवलिक फलन का एक स्केल किया गया संस्करण है।

इस समीकरण में μ माध्य है, और s मानक विचलन के समानुपाती पैमाना पैरामीटर है।

मात्रात्मक फलन

तार्किक वितरण का व्युत्क्रम फलन संचयी वितरण फलन ( मात्रात्मक फलन ) लॉगिट फलन का एक सामान्यीकरण है। इसके व्युत्पन्न को मात्रात्मक घनत्व फलन कहा जाता है। उन्हें इस प्रकार परिभाषित किया गया है:

वैकल्पिक मानकीकरण

तार्किक वितरण का एक वैकल्पिक पैरामीटर स्केल पैरामीटर , व्यक्त करके प्राप्त किया जा सकता है, मानक विचलन के संदर्भ में, , प्रतिस्थापन का उपयोग करना , जहाँ . उपरोक्त फलनों के वैकल्पिक रूप यथोचित रूप से सीधे हैं।

अनुप्रयोग

तार्किक वितरण- और इसके संचयी वितरण फलन (तार्किक फलन) और मात्रात्मक फलन (लॉगिट फलन) के एस - आकार के पैटर्न का व्यापक रूप से कई अलग-अलग क्षेत्रों में उपयोग किया गया है।

तार्किक प्रतिगमन

सबसे साधारण अनुप्रयोगों में से एक तार्किक प्रतिगमन में है, जिसका उपयोग श्रेणीबद्ध निर्भर चर (जैसे, हाँ-नहीं विकल्प या 3 या 4 संभावनाओं का विकल्प) के मॉडलिंग के लिए किया जाता है, जितना कि मानक रैखिक प्रतिगमन का उपयोग निरंतर चर मॉडलिंग के लिए किया जाता है (उदाहरण - आय या जनसंख्या)। विशेष रूप से, तार्किक प्रतिगमन मॉडल को तार्किक वितरण के बाद त्रुटि चर ्स के साथ अव्यक्त चर मॉडल के रूप में कटिबद्ध किया जा सकता है। असतत पसंद मॉडल के सिद्धांत में यह वाक्यांश साधारण है, जहां तार्किक वितरण तार्किक प्रतिगमन में समान भूमिका निभाता है क्योंकि सामान्य वितरण प्रोबिट प्रतिगमन में करता है। दरअसल, तार्किक और नॉर्मल वितरण का आकार काफी समान होता है। यद्पि, तार्किक वितरण में भारी पूंछ वितरण होता है, जो सामान्य वितरण का उपयोग करने की तुलना में अक्सर इसके आधार पर विश्लेषण के मजबूत आंकड़ों को बढ़ाता है।

भौतिकी

इस वितरण के पीडीएफ में वही फलनात्मक रूप है जो फर्मी फलन के व्युत्पन्न के रूप में है। अर्धचालकों और धातुओं में इलेक्ट्रॉन गुणों के सिद्धांत में, यह व्युत्पन्न इलेक्ट्रॉन परिवहन में उनके योगदान में विभिन्न इलेक्ट्रॉन ऊर्जाओं के सापेक्ष भार को निर्धारित करता है। वे ऊर्जा स्तर जिनकी ऊर्जा वितरण के माध्य (फर्मी स्तर) के सबसे करीब हैं, तापमान से प्रेरित कुछ स्मियरिंग के साथ विद्युत चालन जैसी प्रक्रियाओं पर हावी हैं,।[2]: 34  यद्पि ध्यान दें कि फर्मी-डिराक आंकड़ों में प्रासंगिक संभाव्यता वितरण वास्तव में एक साधारण बर्नौली वितरण है, जिसमें फर्मी फलन द्वारा दिए गए प्रायिकता कारक हैं।

तार्किक वितरण एक टेलीग्राफ प्रक्रिया द्वारा वर्णित एक परिमित-वेग अवमंदित यादृच्छिक गति के सीमा वितरण के रूप में उत्पन्न होता है जिसमें लगातार वेग परिवर्तनों के बीच यादृच्छिक समय में रैखिक रूप से बढ़ते मापदंडों के साथ स्वतंत्र घातीय वितरण होते हैं।[3]

जल विज्ञान

फ़ाइल:फिटलॉगिस्टिक डिस्ट्र.टिफ, थंब, २५०प्स, वितरण फिटिंग भी देखें

जल विज्ञान में लंबी अवधि के नदी प्रवाह और वर्षा का वितरण (उदाहरण के लिए, मासिक और वार्षिक योग, जिसमें 30 क्रमशः 360 दैनिक मान सम्मिलित हैं) को अक्सर केंद्रीय सीमा प्रमेय के अनुसार लगभग सामान्य माना जाता है।[4] यद्पि, सामान्य वितरण को एक संख्यात्मक सन्निकटन की आवश्यकता होती है। तार्किक वितरण के रूप में, जिसे विश्लेषणात्मक रूप से समाधान किया जा सकता है, सामान्य वितरण के समान है, इसके बदले इसका उपयोग किया जा सकता है। नीली तस्वीर अक्टूबर की बारिश के लिए तार्किक वितरण को फिट करने का एक उदाहरण दिखाती है - जो लगभग सामान्य रूप से वितरित होती है - और यह द्विपद वितरण के आधार पर 90% विश्वास बेल्ट दिखाती है। संचयी बारंबारता विश्लेषण के भाग के रूप में वर्षा के आंकड़ों को साजिश रचने की स्थिति द्वारा दर्शाया जाता है।

शतरंज दर-निर्धारण

संयुक्त राज्य अमेरिका शतरंज संघ और एफआईडीई ने शतरंज दर-निर्धारण की गणना के लिए अपने सूत्र को सामान्य वितरण से तार्किक वितरण में बदल दिया है; एलो दर-निर्धारण प्रणाली पर लेख देखें (स्वयं सामान्य वितरण पर आधारित)।

संबंधित वितरण

  • तार्किक वितरण स्वयं वितरण की नकल करता है।
  • अगर तब .
  • अगर समान वितरण (निरंतर)| यू (0, 1) फिर .
  • अगर और तब स्वतंत्र रूप से .
  • अगर और तब (योग एक तार्किक वितरण नहीं है)। ध्यान दें कि .
  • यदि एक्स ~ तार्किक (μ, एस) तो एक्स (एक्स) ~ लॉग-तार्किक वितरण, और ऍक्स्प (एक्स) + γ ~ स्थानांतरित लॉग-तार्किक वितरण|स्थानांतरित लॉग-तार्किक.
  • यदि एक्स ~ घातीय वितरण | घातीय (1) तो
  • यदि एक्स, वाई ~ एक्सपोनेंशियल (1) तो
  • धातु वितरण तार्किक वितरण का सामान्यीकरण है, जिसमें बिजली की श्रृंखला के संदर्भ में विस्तार होता है तार्किक मापदंडों के लिए प्रतिस्थापित किया जाता है और . परिणामी धातु मात्रात्मक फलन अत्यधिक आकार का लचीला है, एक सरल बंद रूप है, और रैखिक कम से कम वर्गों के साथ आंकड़े के लिए उपयुक्त हो सकता है।

व्युत्पत्ति

उच्च क्रम क्षण

nवें क्रम के केंद्रीय क्षण को मात्रात्मक फलन के संदर्भ में व्यक्त किया जा सकता है:

यह अभिन्न सर्वविदित है[5] और बर्नौली संख्या के संदर्भ में व्यक्त किया जा सकता है:

यह भी देखें

टिप्पणियाँ

  1. Johnson, Kotz & Balakrishnan (1995, p.116).
  2. Davies, John H. (1998). The Physics of Low-dimensional Semiconductors: An Introduction. Cambridge University Press. ISBN 9780521484916.
  3. A. Di Crescenzo, B. Martinucci (2010) "A damped telegraph random process with logistic stationary distribution", J. Appl. Prob., vol. 47, pp. 84–96.
  4. Ritzema, H.P., ed. (1994). आवृत्ति और प्रतिगमन विश्लेषण. Chapter 6 in: Drainage Principles and Applications, Publication 16, International Institute for Land Reclamation and Improvement (ILRI), Wageningen, The Netherlands. pp. 175–224. ISBN 90-70754-33-9.
  5. OEISA001896

संदर्भ

  • जॉन एस. डेकानी और रॉबर्ट ए. स्टाइन (1986), "एक तार्किक वितरण के लिए सूचना मैट्रिक्स प्राप्त करने पर एक नोट", अमेरिकी सांख्यिकीविद, अमेरिकी सांख्यिकीय संघ। 40: 220–222, डीओआई:10.2307/2684541।
  • एन. बालकृष्णन (1992), तार्किक वितरण की पुस्तिका, मार्सेल डेकर, न्यूयॉर्क, आईएसबीएन 0-8247-8587-8।
  • जॉनसन, एन. एल.; कोट्ज़, एस.; एन. बालकृष्णन (1995), निरंतर यूनीवेरिएट वितरण। वॉल्यूम, 2 (दूसरा संस्करण), आईएसबीएन 0-471-58494-0।
  • मोडिस, थिओडोर (1992) प्रेडिक्शन्स: सोसाइटीज टेलटेल सिग्नेचर रिवील्स द पास्ट एंड फोरकास्ट्स द फ्यूचर, साइमन एंड शूस्टर, न्यूयॉर्क, आईएसबीएन 0-671-75917-5।