अत्यधिक संमिश्र संख्या
एक उच्च संमिश्र संख्या एक सकारात्मक संख्या पूर्णांक है जिसमें किसी भी छोटे सकारात्मक पूर्णांक की तुलना में अधिक विभाजक होते हैं। एक संबंधित अवधारणा एक बड़े मापदंड पर समग्र संख्या की है एक सकारात्मक पूर्णांक जिसमें कम से कम उतने ही विभाजक हैं जितने छोटे सकारात्मक पूर्णांक हैं। नाम कुछ सीमा में पथ से अलग हो सकता है, क्योंकि पहले दो अत्यधिक मिश्रित संख्याएँ (1 और 2) वास्तव में मिश्रित संख्याएँ नहीं हैं; चूंकि आगे की सभी नियम हैं।
रामानुजन ने 1915 में अत्यधिक मिश्रित संख्याओं पर एक पेपर लिखा था।[1]
गणितज्ञ जीन-पिअर कहने ने सुझाव दिया कि प्लेटो को अत्यधिक समग्र संख्याओं के बारे में पता होना चाहिए क्योंकि उन्होंने जानबूझकर ऐसी संख्या 5040 (संख्या) (= फैक्टोरियल|7!) को शहर में नागरिकों की आदर्श संख्या के रूप में चुना था।[2]
उदाहरण
आरंभिक या सबसे छोटी 38 अत्यधिक मिश्रित संख्याएँ नीचे दी गई तालिका में सूचीबद्ध हैं (sequence A002182 in the OEIS). डी (एन) लेबल वाले स्तम्भ में विभाजकों की संख्या दी गई है। तारांकन श्रेष्ठ उच्च संमिश्र संख्या दर्शाते हैं।
क्रम | HCN n |
मुख्य
गुणनखंडन |
मुख्य
एक्सपोनेंट |
प्रमुख कारकों
की संख्या |
d(n) | प्रारंभिक गुणनखंडन |
---|---|---|---|---|---|---|
1 | 1 | 0 | 1 | |||
2 | 2* | 1 | 1 | 2 | ||
3 | 4 | 2 | 2 | 3 | ||
4 | 6* | 1,1 | 2 | 4 | ||
5 | 12* | 2,1 | 3 | 6 | ||
6 | 24 | 3,1 | 4 | 8 | ||
7 | 36 | 2,2 | 4 | 9 | ||
8 | 48 | 4,1 | 5 | 10 | ||
9 | 60* | 2,1,1 | 4 | 12 | ||
10 | 120* | 3,1,1 | 5 | 16 | ||
11 | 180 | 2,2,1 | 5 | 18 | ||
12 | 240 | 4,1,1 | 6 | 20 | ||
13 | 360* | 3,2,1 | 6 | 24 | ||
14 | 720 | 4,2,1 | 7 | 30 | ||
15 | 840 | 3,1,1,1 | 6 | 32 | ||
16 | 1260 | 2,2,1,1 | 6 | 36 | ||
17 | 1680 | 4,1,1,1 | 7 | 40 | ||
18 | 2520* | 3,2,1,1 | 7 | 48 | ||
19 | 5040* | 4,2,1,1 | 8 | 60 | ||
20 | 7560 | 3,3,1,1 | 8 | 64 | ||
21 | 10080 | 5,2,1,1 | 9 | 72 | ||
22 | 15120 | 4,3,1,1 | 9 | 80 | ||
23 | 20160 | 6,2,1,1 | 10 | 84 | ||
24 | 25200 | 4,2,2,1 | 9 | 90 | ||
25 | 27720 | 3,2,1,1,1 | 8 | 96 | ||
26 | 45360 | 4,4,1,1 | 10 | 100 | ||
27 | 50400 | 5,2,2,1 | 10 | 108 | ||
28 | 55440* | 4,2,1,1,1 | 9 | 120 | ||
29 | 83160 | 3,3,1,1,1 | 9 | 128 | ||
30 | 110880 | 5,2,1,1,1 | 10 | 144 | ||
31 | 166320 | 4,3,1,1,1 | 10 | 160 | ||
32 | 221760 | 6,2,1,1,1 | 11 | 168 | ||
33 | 277200 | 4,2,2,1,1 | 10 | 180 | ||
34 | 332640 | 5,3,1,1,1 | 11 | 192 | ||
35 | 498960 | 4,4,1,1,1 | 11 | 200 | ||
36 | 554400 | 5,2,2,1,1 | 11 | 216 | ||
37 | 665280 | 6,3,1,1,1 | 12 | 224 | ||
38 | 720720* | 4,2,1,1,1,1 | 10 | 240 |
पहले 15 अत्यधिक संमिश्र संख्याओं के विभाजक नीचे दिखाए गए हैं।
n | d(n) | n के विभाजक |
---|---|---|
1 | 1 | 1 |
2 | 2 | 1, 2 |
4 | 3 | 1, 2, 4 |
6 | 4 | 1, 2, 3, 6 |
12 | 6 | 1, 2, 3, 4, 6, 12 |
24 | 8 | 1, 2, 3, 4, 6, 8, 12, 24 |
36 | 9 | 1, 2, 3, 4, 6, 9, 12, 18, 36 |
48 | 10 | 1, 2, 3, 4, 6, 8, 12, 16, 24, 48 |
60 | 12 | 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 |
120 | 16 | 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120 |
180 | 18 | 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 30, 36, 45, 60, 90, 180 |
240 | 20 | 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 40, 48, 60, 80, 120, 240 |
360 | 24 | 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 30, 36, 40, 45, 60, 72, 90, 120, 180, 360 |
720 | 30 | 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 30, 36, 40, 45, 48, 60, 72, 80, 90, 120, 144, 180, 240, 360, 720 |
840 | 32 | 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 15, 20, 21, 24, 28, 30, 35, 40, 42, 56, 60, 70, 84, 105, 120, 140, 168, 210, 280, 420, 840 |
नीचे दी गई तालिका 10080 के सभी 72 विभाजकों को 36 अलग-अलग विधियों से दो संख्याओं के उत्पाद के रूप में लिखकर दिखाती है।
अत्यधिक समग्र संख्या: 10080
10080 = (2 × 2 × 2 × 2 × 2) × (3 × 3) × 5 × 7 | |||||
1 × 10080 |
2 × 5040 |
3 × 3360 |
4 × 2520 |
5 × 2016 |
6 × 1680 |
7 × 1440 |
8 × 1260 |
9 × 1120 |
10 × 1008 |
12 × 840 |
14 × 720 |
15 × 672 |
16 × 630 |
18 × 560 |
20 × 504 |
21 × 480 |
24 × 420 |
28 × 360 |
30 × 336 |
32 × 315 |
35 × 288 |
36 × 280 |
40 × 252 |
42 × 240 |
45 × 224 |
48 × 210 |
56 × 180 |
60 × 168 |
63 × 160 |
70 × 144 |
72 × 140 |
80 × 126 |
84 × 120 |
90 × 112 |
96 × 105 |
ध्यान दें: बोल्ड में संख्याएं स्वयं अत्यधिक संमिश्र संख्याएं होती हैं।
केवल बीसवीं अत्यधिक संमिश्र संख्या 7560 (= 3 × 2520) अनुपस्थित है। 10080 एक तथाकथित 7-स्मूथ संख्या (ओईआईएस में अनुक्रम A002473) है। |
15,000वीं अत्यधिक संमिश्र संख्या अचिम फ्लेमेंकैंप की वेबसाइट पर पाई जा सकती है। यह 230 प्राइम्स का उत्पाद है:
जहाँ क्रमिक अभाज्य संख्याओं का क्रम है, और सभी छोड़े गए शब्द (a22 to a228) एक के समान एक्सपोनेंट वाले कारक हैं (अर्थात संख्या है ). अधिक संक्षेप में यह सात अलग-अलग आदिमों का उत्पाद है:
जहाँ मौलिक है।[3]
प्रधान गुणनखंड
सामान्यतः किसी संख्या को अत्यधिक संमिश्रित होने के लिए उसके पास यथासंभव छोटे प्रमुख गुणनखंड होने चाहिए, किंतु उनमें से बहुत अधिक नहीं अंकगणित के मूलभूत प्रमेय के अनुसार प्रत्येक धनात्मक पूर्णांक n का एक अद्वितीय अभाज्य गुणनखंड होता है:
जहाँ अभाज्य हैं और घातांक सकारात्मक पूर्णांक हैं।
n के किसी भी कारक में प्रत्येक प्राइम में समान या कम बहुलता होनी चाहिए:
तो n के विभाजकों की संख्या है:
इसलिए, एक अत्यधिक मिश्रित संख्या n के लिए,
- k दी गई अभाज्य संख्याएँ pi ठीक पहले k अभाज्य संख्याएँ होनी चाहिए (2, 3, 5, ...); यदि नहीं तो हम दिए गए अभाज्यों में से किसी एक को एक छोटे अभाज्य से बदल सकते हैं, और इस प्रकार समान संख्या वाले विभाजकों के साथ n से छोटी संख्या प्राप्त कर सकते हैं (उदाहरण के लिए 10 = 2 × 5 को 6 = 2 × 3 से बदला जा सकता है; दोनों में चार भाजक)
- घातांकों का क्रम गैर-बढ़ता हुआ होना चाहिए अर्थात ; अन्यथा दो घातांकों की अदला-बदली करने पर हमें भाजकों की समान संख्या के साथ फिर से n से छोटी संख्या प्राप्त होगी (उदाहरण के लिए 18 = 21 × 32 को 12 = 22 × 31 से बदला जा सकता है दोनों के छह विभाजक हैं)।
इसके अतिरिक्त दो विशेष स्थिति n = 4 और n = 36 को छोड़कर अंतिम प्रतिपादक ck 1 के समान होना चाहिए। इसका अर्थ है कि 1, 4, और 36 केवल वर्ग उच्च संमिश्र संख्याएं हैं। यह कहना कि घातांकों का क्रम गैर-बढ़ता है यह कहने के समान है कि एक उच्च संमिश्र संख्या आदिम का एक उत्पाद है या वैकल्पिक रूप से इसके प्रमुख हस्ताक्षर के लिए सबसे छोटी संख्या है।
ध्यान दें कि यद्यपि ऊपर वर्णित नियम आवश्यक हैं वे अत्यधिक संमिश्र होने के लिए संख्या के लिए पर्याप्त नहीं हैं। उदाहरण के लिए, 96 = 25 × 3 उपरोक्त नियमो को पूरा करता है और इसमें 12 विभाजक हैं किंतु यह अत्यधिक मिश्रित नहीं है क्योंकि एक छोटी संख्या 60 है जिसमें विभाजकों की संख्या समान है।
स्पर्शोन्मुख विकास और घनत्व
यदि Q(x) x से कम या उसके समान उच्च समग्र संख्याओं की संख्या को दर्शाता है तो दो स्थिरांक a और b दोनों 1 से अधिक हैं जैसे कि
असमानता का पहला भाग 1944 में पॉल एर्दोस द्वारा और दूसरा भाग 1988 में जीन लुइस निकोलस द्वारा सिद्ध किया गया था। हमारे पास है[4]
और
संबंधित अनुक्रम
6 से अधिक उच्च संमिश्र संख्याएँ भी विपुल संख्याएँ हैं। इस तथ्य का पता लगाने के लिए केवल एक विशेष अत्यधिक संमिश्र संख्या के तीन सबसे बड़े उचित विभाजकों को देखने की आवश्यकता है। यह गलत है कि आधार 10 में सभी अत्यधिक संमिश्र संख्याएं भी हर्षद संख्याएं हैं। पहला एचसीएन जो हर्षद संख्या नहीं है वह 245,044,800 है,
जिसका अंकों का योग 27 है किंतु 27 समान रूप से 245,044,800 में विभाजित नहीं होता है।
पहले 38 अत्यधिक संमिश्र संख्याओं में से 10 श्रेष्ठ उच्च संमिश्र संख्याएँ हैं। अत्यधिक संमिश्र संख्याओं का क्रम ((sequence A002182 in the OEIS)) पूर्ण रूप से n भाजक ((sequence A005179 in the OEIS)) के साथ सबसे छोटी संख्या k के अनुक्रम का एक सबसेट है।
अत्यधिक संमिश्र संख्याएँ जिनके विभाजक भी एक उच्च संमिश्र संख्या हैं, n = 1, 2, 6, 12, 60, 360, 1260, 2520, 5040, 55440, 277200, 720720, 3603600, 61261200, 2205403200, 2933186 के लिए हैं 25600, 6746328388800 , 195643523275200 (sequence A189394 in the OEIS). यह अत्यधिक संभावना है कि यह क्रम पूरा हो गया है।
सभी m ≤ n के लिए d(n) ≥ d(m) होने पर धनात्मक पूर्णांक n एक 'व्यापक रूप से संयुक्त संख्या' होती है। गणना कार्य QL(x) बड़े मापदंड पर मिश्रित संख्याएँ संतुष्ट करती हैं
सकारात्मक c,के लिए, d के साथ।.[5][6]
क्योंकि एक उच्च संमिश्र संख्या का अभाज्य गुणनखंड पहले k अभाज्यों का उपयोग करता है, प्रत्येक अत्यधिक संमिश्र संख्या एक व्यावहारिक संख्या होनी चाहिए।[7] अंश (गणित) से संबंधित गणनाओं में उनके उपयोग में आसानी के कारण इनमें से कई संख्याएँ ऐतिहासिक भार और माप और इंजीनियरिंग डिज़ाइनों में उपयोग की जाती हैं।
यह भी देखें
- सुपीरियर अत्यधिक समग्र संख्या
- अत्यधिक कुल संख्या
- भाजक की तालिका
- यूलर का कुल कार्य
- गोल संख्या
- स्मूथ संख्या
टिप्पणियाँ
- ↑ Ramanujan, S. (1915). "अत्यधिक मिश्रित संख्याएँ" (PDF). Proc. London Math. Soc. Series 2. 14: 347–409. doi:10.1112/plms/s2_14.1.347. JFM 45.1248.01.
- ↑ Kahane, Jean-Pierre (February 2015), "Bernoulli convolutions and self-similar measures after Erdős: A personal hors d'oeuvre", Notices of the American Mathematical Society, 62 (2): 136–140. Kahane cites Plato's Laws, 771c.
- ↑ Flammenkamp, Achim, Highly Composite Numbers.
- ↑ Sándor et al. (2006) p. 45
- ↑ Sándor et al. (2006) p. 46
- ↑ Nicolas, Jean-Louis (1979). "Répartition des nombres largement composés". Acta Arith. (in français). 34 (4): 379–390. doi:10.4064/aa-34-4-379-390. Zbl 0368.10032.
- ↑ Srinivasan, A. K. (1948), "Practical numbers" (PDF), Current Science, 17: 179–180, MR 0027799.
संदर्भ
- Sándor, József; Mitrinović, Dragoslav S.; Crstici, Borislav, eds. (2006). Handbook of number theory I. Dordrecht: Springer-Verlag. pp. 45–46. ISBN 1-4020-4215-9. Zbl 1151.11300.
- Erdös, P. (1944). "On highly composite numbers" (PDF). Journal of the London Mathematical Society. Second Series. 19 (75_Part_3): 130–133. doi:10.1112/jlms/19.75_part_3.130. MR 0013381.
- Alaoglu, L.; Erdös, P. (1944). "On highly composite and similar numbers" (PDF). Transactions of the American Mathematical Society. 56 (3): 448–469. doi:10.2307/1990319. JSTOR 1990319. MR 0011087.
- Ramanujan, Srinivasa (1997). "Highly composite numbers" (PDF). Ramanujan Journal. 1 (2): 119–153. doi:10.1023/A:1009764017495. MR 1606180. S2CID 115619659. Annotated and with a foreword by Jean-Louis Nicolas and Guy Robin.