हाइपर ज्यामितीय फलन शब्द कभी-कभी सामान्यीकृत हाइपर ज्यामितीय फलन को संदर्भित करता है। अन्य हाइपर ज्यामितीय फलनो के लिए यह भी देखें।
गणित में, गाऊसी या साधारण हाइपरज्यामितीय फलन 2F1(a,b;c;z) 'हाइपरज्यामितीय श्रृंखला' द्वारा प्रस्तुत एक विशेष फलन के रूप में है, जिसमें विशिष्ट या सीमित गणित स्थितियों के रूप में कई अन्य विशेष फलन सम्मलित होते हैं। यह दूसरे क्रम के रैखिक फलन साधारण अवकल समीकरण (ओडीइ) का एक हल है। तीन नियमित अद्वितीय बिंदुओं के साथ प्रत्येक दूसरे क्रम के रैखिक ओडीइ को इस समीकरण में रूपांतरित किया जा सकता है।
हाइपरज्यामितीय फलन से जुड़े कई हजारों प्रकाशित सर्वसमिका (गणित) में से कुछ की व्यवस्थित सूचियों के लिए एर्डेली एट अल 1953 और ओल्ड डलहुइस 2010 द्वारा संदर्भ फलनो को देखें और इस प्रकार सभी सर्वसमिका को व्यवस्थित करने के लिए कोई ज्ञात प्रणाली नहीं है और वास्तव में कोई ज्ञात कलन विधि जो सभी सर्वसमिका को उत्पन्न कर सकते हैं और कई भिन्न -भिन्न कलन विधि की एक संख्या ज्ञात कर सर्वसमिका की विभिन्न श्रृंखला उत्पन्न करते हैं और इस प्रकार कलन विधि सर्वसमिका की खोज का सिद्धांत एक सक्रिय शोध का विषय बना हुआ है।
हाइपरज्यामितीय श्रृंखला शब्द का पहली बार उपयोग जॉन वालिस ने अपनी 1655 की पुस्तक अरिथमेटिका इन्फिनिटोरम में किया था।
हाइपरज्यामितीय श्रृंखला का लियोनहार्ड यूलर द्वारा अध्ययन किया गया था, लेकिन कार्ल फ्रेडरिक गॉस ने 1813 में पहला पूर्ण व्यवस्थित ट्रीटमेंट दिया गया था
उन्नीसवीं शताब्दी में किए गए अध्ययनों में एर्नस्ट कुममर (1836) के अध्ययन तथा समान ज्यामितीय प्रकार्य के बर्नहार्ड रिमेंन (1857) द्वारा आधारभूत मौलिक लक्षण का वर्णन है और हाइपर ज्यामितीय फलन का अवकलन समीकरण के माध्यम से इसे संतुष्ट करता है।
रीमन ने दिखाया कि जटिल समतल में परीक्षण 2F1(z), के लिए द्वितीय क्रम का अवकलन समीकरण है, इसकी तीन नियमित विलक्षणता द्वारा रीमैन क्षेत्र पर विशेषता की जा सकती है।
जिन स्थिति में समाधान बीजगणितीय फलन के रूप में हैं, वहां हर्मन श्वार्ज़ (श्वार्ज़ की सूची) द्वारा दिखाया जाता है।
हाइपरज्यामितीय श्रृंखला
हाइपर ज्यामितीय फलन के लिए परिभाषित |z| < 1 शक्ति श्रृंखला द्वारा किया गया है।
यदि यह अपरिभाषित या अनंत c के रूप में है, तो यह एक गैर-सकारात्मक पूर्णांक के बराबर होता है। यहाँ (q)n उभरता हुआ पोचममेर प्रतीक के रूप में है, जिसे इसके द्वारा परिभाषित किया गया है।
यदि a या b एक गैर-धनात्मक पूर्णांक है तो यह श्रृंखला समाप्त हो जाती है, जहाँ एक बहुपद के लिए फलन कम हो जाता है।
|z| ≥ 1 के साथ जटिल तर्क z के लिए इसे जटिल तल में किसी भी पथ के साथ विश्लेषणात्मकनिरंतरता रूप से जारी रखा जा सकता है जो शाखा बिंदु 1 और अनंत से बचती है।
जैसा c → −m, जहाँ m एक गैर-ऋणात्मक पूर्णांक है, और 2F1(z) → ∞. के रूप में गामा फलन के मूल्य गामा Γ(c)गामा समारोह से विभाजित होते है।
कई सामान्य गणितीय फलनो को हाइपर ज्यामितीय फलन के संदर्भ में या इसके सीमित स्थितियों के रूप में व्यक्त किया जा सकता है। कुछ विशिष्ट प्रकार के उदाहरण हैं
जब a=1 और b=c, श्रृंखला एक सामान्य ज्यामितीय श्रृंखला में कम हो जाती है, अर्थात
इसका नाम हाइपरज्यामितीय.है और यह फलन ज्यामितीय श्रृंखला के सामान्यीकरण के रूप में माना जा सकता है।
कंफ्लुएंट हाइपरज्यामितीय फलन या कुममर का फलन को हाइपर ज्यामितीय फलन की सीमा के रूप में दिया जा सकता है
इसलिए सभी फलन जो इसके अनिवार्य रूप से विशेष के रूप में होते है, जैसे बेसेल फलन, को हाइपरज्यामितीय फलनो की सीमा के रूप में व्यक्त किया जा सकता है। इनमें से अधिकांश उपयोग किए जाने वाले गणितीय भौतिकी के फलनो के रूप में सम्मलित हैं।
लेजेंड्रे फलन एक दूसरे क्रम अवकल समीकरण का 3 नियमित अद्वितीय बिंदुओं के समाधान हैं, इसलिए इसे हाइपर ज्यामितीय फलन के संदर्भ में कई विधियों से व्यक्त किया जा सकता है।उदाहरण के लिए हैं,
जे-इन्वेरीअन्ट, एक मॉड्यूलर फलन , के रूप में तर्कसंगत फलन है।
अपूर्ण बीटा फलन Bx(p,q) से संबंधित होता है।
पूर्ण दीर्घवृत्तीय समाकलन K और E द्वारा दिए गए हैं,
हाइपरज्यामितीय अवकलन समीकरण
हाइपर ज्यामितीय फलन यूलर के हाइपर ज्यामितीय अवकलन समीकरण का एक समाधान है
जिसके तीन नियमित अद्वितीय बिंदु 0,1 और ∞ हैं। इस समीकरण का तीन यादृच्छिक नियमित अद्वितीय बिंदुओं पर सामान्यीकरण रिमेंन के अवकल समीकरण द्वारा दिया जाता है और इस प्रकार तीन नियमित अद्वितीय बिन्दुओं वाले किसी भी द्वितीय क्रम के रैखिक अवकलन समीकरण को चर के परिवर्तन द्वारा हाइपरज्यामितीय अवकलन समीकरण में परिवर्तित किया जा सकता है।
अद्वितीय बिंदुओं पर समाधान
हाइपरज्यामितीय अवकलन समीकरण के समाधान हाइपरज्यामितीय श्रृंखला से निर्मित होते हैं 2F1(ए, बी; सी; जेड)। समीकरण के दो रैखिक रूप से स्वतंत्र समाधान हैं। तीन अद्वितीय बिंदुओं 0, 1, ∞ में से प्रत्येक पर, सामान्यतः x के रूप के दो विशेष समाधान होते हैंs x का एक होलोमॉर्फिक फलन है, जहां s इंडिकियल समीकरण की दो जड़ों में से एक है और x एक स्थानीय चर है जो एक नियमित विलक्षण बिंदु पर गायब हो जाता है। यह इस प्रकार 3 × 2 = 6 विशेष समाधान देता है।
बिंदु z = 0 के आसपास, दो स्वतंत्र समाधान हैं, यदि c एक गैर-सकारात्मक पूर्णांक नहीं है,
और, इस शर्त पर कि c एक पूर्णांक नहीं है,
यदि c एक गैर-सकारात्मक पूर्णांक 1−m है, तो इनमें से पहला समाधान उपस्थित नहीं है और इसके द्वारा प्रतिस्थापित किया जाना चाहिए दूसरा समाधान उपस्थित नहीं है जब c 1 से अधिक पूर्णांक है, और पहले समाधान के बराबर है, या इसका प्रतिस्थापन, जब c कोई अन्य पूर्णांक है। इसलिए जब c एक पूर्णांक है, तो दूसरे समाधान के लिए एक अधिक जटिल अभिव्यक्ति का उपयोग किया जाना चाहिए, पहले समाधान के बराबर ln(z), साथ ही z की शक्तियों में एक और श्रृंखला, जिसमें डिगामा समारोह सम्मलित है। देखना Olde Daalhuis (2010) harvtxt error: no target: CITEREFOlde_Daalhuis2010 (help) जानकारी के लिए।
z = 1 के आसपास, यदि c − a − b एक पूर्णांक नहीं है, तो इसके दो स्वतंत्र समाधान होते हैं
और
लगभग z = ∞, यदि a − b एक पूर्णांक नहीं है, तो इसके दो स्वतंत्र समाधान होते हैं
और
दोबारा, जब गैर-अभिन्नता की शर्तें पूरी नहीं होती हैं, तो अन्य समाधान उपस्थित होते हैं जो अधिक जटिल होते हैं।
उपरोक्त 6 समाधानों में से कोई भी 3 एक रैखिक संबंध को संतुष्ट करता है क्योंकि समाधानों का स्थान 2-आयामी है, (6 3) = उनके बीच 20 रैखिक संबंध जिन्हें कनेक्शन सूत्र कहा जाता है।
कुमेर के 24 उपाय
एन अद्वितीय बिंदुओं के साथ एक दूसरे क्रम के फ्यूचियन समीकरण में समरूपता का एक समूह है जो इसके समाधान पर कार्य करता है (प्रोजेक्टिवली), कॉक्सेटर समूह डब्ल्यू (डी) के लिए आइसोमोर्फिकn) आदेश 2n−1n!. हाइपरज्यामितीय समीकरण केस एन = 3 है, ऑर्डर 24 आइसोमोर्फिक के समूह के साथ 4 बिंदुओं पर सममित समूह के लिए, जैसा कि पहले वर्णित है
गंभीर दु:ख सममित समूह की उपस्थिति आकस्मिक है और 3 से अधिक अद्वितीय बिंदुओं के लिए कोई एनालॉग नहीं है, और कभी-कभी समूह को 3 बिंदुओं पर सममित समूह के विस्तार के रूप में सोचना बेहतर होता है (3 अद्वितीय बिंदुओं के क्रमपरिवर्तन के रूप में कार्य करना) एक क्लेन 4-समूह (जिसके तत्व समान संख्या में अद्वितीय बिंदुओं पर घातांक के अंतर के संकेतों को बदलते हैं)। Kummer के 24 रूपांतरणों का समूह तीन परिवर्तनों द्वारा एक समाधान F(a,b;c;z) से एक में उत्पन्न होता है
जो 4 अंक 1, 2, 3, 4 पर सममित समूह के साथ एक समरूपता के अनुसार पारदर्शिता (12), (23), और (34) के अनुरूप है। (इनमें से पहला और तीसरा वास्तव में एफ (ए, b;c;z) जबकि दूसरा अवकलन समीकरण का एक स्वतंत्र समाधान है।)
कुमार के 24 = 6 × 4 परिवर्तनों को हाइपरजोमेट्रिक फलन में लागू करने से ऊपर दिए गए 6 = 2 × 3 समाधान 3 अद्वितीय बिंदुओं में से प्रत्येक पर 2 संभावित घातांकों में से प्रत्येक के अनुरूप होते हैं, जिनमें से प्रत्येक सर्वसमिका के कारण 4 बार प्रकट होता है
क्यू-फॉर्म
हाइपरज्यामितीय अवकलन समीकरण को क्यू-फॉर्म में लाया जा सकता है
प्रतिस्थापन करके u = wv और पहले-व्युत्पन्न शब्द को हटा दें। एक पाता है
श्वार्ज़ त्रिभुज मानचित्र या श्वार्ज़ एस-फलन समाधान के जोड़े के अनुपात हैं।
जहाँ k बिन्दु 0, 1, ∞ में से एक है। अंकन
कभी-कभी प्रयोग भी किया जाता है। ध्यान दें कि कनेक्शन गुणांक त्रिभुज मानचित्रों पर मोबियस परिवर्तन बन जाते हैं।
ध्यान दें कि प्रत्येक त्रिभुज मानचित्र नियमित अद्वितीय बिंदु z ∈ {0, 1, ∞} पर क्रमशः है, साथ में
और
λ, μ और ν वास्तविक के विशेष मामले में, 0 ≤ λ,μ,ν < 1 के साथ, फिर एस-नक्शे ऊपरी अर्ध-तल एच के अनुरूप मानचित्र होते हैं जो रीमैन क्षेत्र पर त्रिभुजों के अनुरूप होते हैं, जो गोलाकार चाप से घिरे होते हैं। यह मैपिंग श्वार्ज़ियन डेरिवेटिव # श्वार्ज-क्रिस्टोफ़ेल मैपिंग के सर्कुलर आर्क पॉलीगॉन की सर्कुलर आर्क्स वाले त्रिकोणों की कॉनफ़ॉर्मल मैपिंग है। अद्वितीय बिंदु 0,1 और ∞ त्रिभुज के शीर्षों पर भेजे जाते हैं। त्रिभुज के कोण क्रमशः πλ, πμ और πν हैं।
इसके अतिरिक्त , λ=1/p, μ=1/q और ν=1/r पूर्णांकों p, q, 'के मामले में 'r, फिर त्रिभुज गोले, जटिल तल या ऊपरी आधे तल को टाइल करता है, चाहे λ + μ + ν - 1 धनात्मक, शून्य या ऋणात्मक हो; और त्रिकोण समूह 〈p, q, r〉 = Δ(p, q, ' 'आर)।
मोनोड्रोमी समूह
एक हाइपरज्यामितीय समीकरण का मोनोड्रोमी वर्णन करता है कि कैसे मौलिक समाधान बदल जाते हैं जब विश्लेषणात्मक रूप से जेड समतल में पथ के चारों ओर जारी रहता है जो उसी बिंदु पर लौटते हैं।
यही है, जब पथ एक विलक्षणता के चारों ओर घूमता है 2F1, समापन बिंदु पर समाधानों का मान प्रारंभिक बिंदु से भिन्न होगा।
हाइपरज्यामितीय समीकरण के दो मौलिक समाधान एक रैखिक परिवर्तन द्वारा एक दूसरे से संबंधित हैं; इस प्रकार मोनोड्रोमी एक मैपिंग (समूह समरूपतावाद) है:
जहां प1मौलिक समूह है। दूसरे शब्दों में, मोनोड्रोमी मौलिक समूह का दो आयामी रैखिक प्रतिनिधित्व है। समीकरण का मोनोड्रोमी समूह इस मानचित्र की छवि है, अर्थात मोनोड्रोमी मैट्रिसेस द्वारा उत्पन्न समूह। मौलिक समूह के मोनोड्रोमी प्रतिनिधित्व को अद्वितीय बिंदुओं पर प्रतिपादकों के संदर्भ में स्पष्ट रूप से गणना की जा सकती है।[1] यदि (α, α'), (β, β') और (γ,γ') 0, 1 और ∞ पर एक्सपोनेंट हैं, तो z लेने पर0 0 के पास, 0 और 1 के आस-पास के लूप में मोनोड्रोमी मैट्रिसेस हैं
कहाँ
यदि 1−a, c−a−b, a−b हर k, l, m के साथ गैर-पूर्णांक परिमेय संख्याएँ हैं तो मोनोड्रोमी समूह परिमित है यदि और केवल यदि , श्वार्ज़ की सूची या पिकार्ड-वेसियट सिद्धांत|कोवासिक का कलन विधि देखें।
बशर्ते कि z एक ऐसी वास्तविक संख्या न हो जो 1 से अधिक या उसके बराबर हो। इसे (1 − zx) का विस्तार करके सिद्ध किया जा सकता है−a द्विपद प्रमेय का उपयोग करके और फिर 1 से छोटे निरपेक्ष मान के साथ z के लिए शब्द द्वारा शब्द को एकीकृत करना, और कहीं और विश्लेषणात्मक निरंतरता द्वारा। जब z एक वास्तविक संख्या 1 से अधिक या उसके बराबर हो, तो विश्लेषणात्मक निरंतरता का उपयोग किया जाना चाहिए, क्योंकि (1 − zx) समाकल के समर्थन में किसी बिंदु पर शून्य है, इसलिए समाकलन का मान अ-परिभाषित हो सकता है। यह 1748 में यूलर द्वारा दिया गया था और इसका तात्पर्य यूलर और Pfaff के अतिज्यामितीय परिवर्तनों से है।
अन्य अभ्यावेदन, अन्य प्रमुख शाखा के अनुरूप, समान इंटीग्रैंड लेकर दिए गए हैं, लेकिन विभिन्न आदेशों में अद्वितीय को बंद करने के लिए एक बंद पोचममेर चक्र होने के लिए एकीकरण का मार्ग ले रहे हैं। इस तरह के रास्ते मोनोड्रोमी एक्शन के अनुरूप हैं।
बार्न्स इंटीग्रल का मूल्यांकन करने के लिए बार्न्स ने अवशेष के सिद्धांत (जटिल विश्लेषण) का उपयोग किया
जैसा
जहां खंभे −a, −a − 1, ..., −b, −b − 1, ..., ध्रुवों 0, 1, 2... को ध्रुवों से भिन्न करने के लिए समोच्च रेखा खींची गई है। यह तब तक मान्य है जब तक z एक गैर-ऋणात्मक वास्तविक संख्या नहीं है।
से सटे हुए कहलाते हैं 2F1(a, b; c; z). गॉस ने दिखाया 2F1(a, b; c; z) को इसके सन्निहित कार्यों में से किन्हीं दो के रैखिक संयोजन के रूप में लिखा जा सकता है, जिसके संदर्भ में तर्कसंगत गुणांक हैं a, b, c, और z. यह देता है
संबंध, के दाहिने हाथ की किन्हीं दो रेखाओं की सर्वसमिका करके दिया गया है
जहाँ F = 2F1(a, b; c; z), F(a+) = 2F1(a + 1, b; c; z), और इसी तरह। बार-बार इन संबंधों को लागू करने से एक रैखिक संबंध खत्म हो जाता है C(z) प्रपत्र के किसी भी तीन कार्यों के बीच
गॉस ने एक सतत अंश के रूप में दो हाइपरज्यामितीय कार्यों के भागफल को लिखने के कई विधि े देने के लिए सन्निहित संबंधों का उपयोग किया, उदाहरण के लिए:
परिवर्तन सूत्र
परिवर्तन सूत्र तर्क z के विभिन्न मूल्यों पर दो हाइपरज्यामितीय कार्यों से संबंधित हैं।
आंशिक रैखिक परिवर्तन
यूलर का परिवर्तन है
यह दो Pfaff रूपांतरणों को जोड़कर अनुसरण करता है
जो बदले में यूलर के अभिन्न प्रतिनिधित्व का अनुसरण करता है। यूलर के पहले और दूसरे परिवर्तनों के विस्तार के लिए, देखें Rathie & Paris (2007) और Rakha & Rathie (2011).
इसे रैखिक संयोजन के रूप में भी लिखा जा सकता है
द्विघात परिवर्तन
यदि दो संख्याएँ 1 − c, c − 1, a − b, b − a, a + b − c, c − a − b बराबर हैं या उनमें से एक 1/2 है तो एक 'द्विघात परिवर्तन' होता है हाइपर ज्यामितीय फलन का, इसे द्विघात समीकरण से संबंधित z के एक भिन्न मान से जोड़ना। द्वारा पहला उदाहरण दिया गया था Kummer (1836), और द्वारा एक पूरी सूची दी गई थी Goursat (1881). एक विशिष्ट उदाहरण है
उच्च क्रम परिवर्तन
यदि 1−c, a−b, a+b−c संकेतों से भिन्न है या उनमें से दो 1/3 या −1/3 हैं तो हाइपरज्यामितीय फलन का एक 'घन परिवर्तन' होता है, जो इसे एक भिन्न मान से जोड़ता है z एक घन समीकरण से संबंधित है। द्वारा पहला उदाहरण दिया गया था Goursat (1881). एक विशिष्ट उदाहरण है
घात 4 और 6 के कुछ परिवर्तन भी हैं। अन्य घात के परिवर्तन केवल तभी उपस्थित होते हैं जब a, b, और c कुछ परिमेय संख्याएँ हों (Vidunas 2005). उदाहरण के लिए,
विशेष बिंदुओं पर मान z
देखना Slater (1966, Appendix III) विशेष बिंदुओं पर सारांश सूत्रों की सूची के लिए, जिनमें से अधिकांश भी दिखाई देते हैं Bailey (1935). Gessel & Stanton (1982) अधिक बिंदुओं पर और मूल्यांकन दें। Koepf (1995) दिखाता है कि इनमें से अधिकांश पहचानों को कंप्यूटर कलन विधि द्वारा कैसे सत्यापित किया जा सकता है।
=== z = 1=== पर विशेष मान
गॉस का योग प्रमेय, कार्ल फ्रेडरिक गॉस के नाम पर, सर्वसमिका है
जो यूलर के अभिन्न सूत्र से z = 1 लगाकर अनुसरण करता है। इसमें एक विशेष मामले के रूप में वैंडरमोंड सर्वसमिका सम्मलित है।
ऐसे कई मामले हैं जहां z = −1 पर z = −1 पर z = −1 को z = 1 में बदलने के लिए और फिर परिणाम का मूल्यांकन करने के लिए गॉस के प्रमेय का उपयोग करके हाइपरज्यामितीय कार्यों का मूल्यांकन किया जा सकता है . एक विशिष्ट उदाहरण कुमेर का प्रमेय है, जिसका नाम अर्न्स्ट कुमेर के नाम पर रखा गया है:
मापदंडों के विशेष तर्कसंगत मूल्यों पर एक बीजगणितीय संख्या के रूप में हाइपर ज्यामितीय फलन देने वाले कई अन्य सूत्र हैं, जिनमें से कुछ में सूचीबद्ध हैं Gessel & Stanton (1982) और Koepf (1995). द्वारा कुछ विशिष्ट उदाहरण दिए गए हैं
जिसे इस रूप में पुन: प्रस्तुत किया जा सकता है
जब भी −π < x < π और T (सामान्यीकृत) चेबीशेव बहुपद है।
यह भी देखें
अपेल श्रृंखला, हाइपरज्यामितीय श्रृंखला का 2-चर सामान्यीकरण
Andrews, George E.; Askey, Richard & Roy, Ranjan (1999). Special functions. Encyclopedia of Mathematics and its Applications. Vol. 71. Cambridge University Press. ISBN978-0-521-62321-6. MR1688958.
Gasper, George & Rahman, Mizan (2004). Basic Hypergeometric Series, 2nd Edition, Encyclopedia of Mathematics and Its Applications, 96, Cambridge University Press, Cambridge. ISBN0-521-83357-4.
Heckman, Gerrit & Schlichtkrull, Henrik (1994). Harmonic Analysis and Special Functions on Symmetric Spaces. San Diego: Academic Press. ISBN0-12-336170-2. (part 1 treats hypergeometric functions on Lie groups)