चतुष्कोणीय बीजगणित

From Vigyanwiki
Revision as of 10:40, 6 June 2023 by Manidh (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

गणित में, एक क्षेत्र (गणित) F पर एक चतुष्कोणीय बीजगणित F के ऊपर A एक केंद्रीय सरल बीजगणित है।[1][2] जिसका आयाम (सदिश समष्टि) 4 के ऊपर F है। प्रत्येक चतुर्धातुक बीजगणित अदिश विस्तारण द्वारा एक आव्यूह बीजगणित बन जाता है (समतुल्य रूप से, क्षेत्र विस्तार के साथ बीजगणित का प्रदिश उत्पाद), यानी F के उपयुक्त क्षेत्र विस्तार के लिए, K पर 2 × 2 आव्यूह बीजगणित के लिए समरूपी है।

चतुष्कोणीय बीजगणित की धारणा को हैमिल्टन के चतुष्कोणों के एक स्वेच्छाचारी आधार क्षेत्र के सामान्यीकरण के रूप में देखा जा सकता है। हैमिल्टन चतुष्कोण एक चतुष्कोणीय बीजगणित (उपरोक्त अर्थ में) हैं, और वास्तव में केवल एक के ऊपर 2 × 2 वास्तविक संख्या आव्यूह बीजगणित के अतिरिक्त, तुल्याकारिता तक है। जब , तब बिकटेर्नियन F पर चतुष्कोणीय बीजगणित बनाते हैं।

संरचना

चतुर्धातुक बीजगणित का अर्थ हैमिल्टन के चतुष्कोणों के एक क्षेत्र पर बीजगणित की तुलना में कुछ अधिक सामान्य है। जब गुणांक क्षेत्र (गणित) F में विशेषता (बीजगणित) 2 नहीं है, तो F पर प्रत्येक चतुष्कोणीय बीजगणित को आधार (रैखिक बीजगणित) के साथ 4-आयामी F-सदिश स्थान के रूप में वर्णित किया जा सकता है। निम्नलिखित गुणन नियमों के साथ:

जहाँ a और b, F के दिए गए शून्येतर अवयव हैं। इन नियमों से हम पाते हैं:

पारम्परिक उदाहरण जहां हैमिल्टन के चतुष्कोण (a = b = -1) और विभाजन-चतुर्भुज (a = -1, b = +1) हैं। विभाजित-चतुर्भुजों में, और , हैमिल्टन के समीकरणों से भिन्न है।

इस तरह से परिभाषित बीजगणित निरूपित है (a b)F या बस (a, b)। [3] जब F की विशेषता 2 होती है, तो 4 तत्वों के आधार पर एक अलग स्पष्ट विवरण भी संभव है, लेकिन किसी भी घटना में F पर चतुष्कोणीय बीजगणित की परिभाषा F पर 4-आयामी केंद्रीय सरल बीजगणित के रूप में सभी विशेषताओं में समान रूप से लागू होती है।

एक चतुष्कोणीय बीजगणित (a, b)F F पर 2 × 2 आव्यूह के आव्यूह बीजगणित के लिए या तो एक विभाजन बीजगणित या समरूपी है; बाद वाली स्तिथि को विभाजन कहा जाता है। [4] आदर्श रूप निम्न है

विभाजन बीजगणित की एक संरचना को परिभाषित करता है यदि और केवल यदि मानदंड एक विषमदैशिक द्विघात रूप है, अर्थात शून्य केवल शून्य तत्व पर है। शांकव खंड C(a,b) द्वारा परिभाषित

विभाजित स्तिथि में F में निर्देशांक के साथ एक बिंदु (x,y,z) है।[5]


आवेदन

चतुर्भुज बीजगणित संख्या सिद्धांत में विशेष रूप से द्विघात रूपों में लागू होते हैं। वे ठोस संरचनाएं हैं जो F के ब्राउर समूह में अनुक्रम (समूह सिद्धांत) दो के तत्व उत्पन्न करती हैं। बीजगणितीय संख्या क्षेत्रों सहित कुछ क्षेत्रों के लिए, इसके ब्राउर समूह में क्रम 2 के प्रत्येक तत्व को चतुर्धातुक बीजगणित द्वारा दर्शाया जाता है। अलेक्जेंडर मर्कुरजेव के एक प्रमेय का अर्थ है कि किसी भी क्षेत्र के ब्राउर समूह में क्रम 2 के प्रत्येक तत्व को चतुष्कोणीय बीजगणित के प्रदिश उत्पाद द्वारा दर्शाया गया है।[6] विशेष रूप से, पी-एडिक क्षेत्रों पर चतुष्कोणीय बीजगणित के निर्माण को स्थानीय वर्ग क्षेत्र सिद्धांत के द्विघात हिल्बर्ट प्रतीक के रूप में देखा जा सकता है।

वर्गीकरण

यह फर्डिनेंड जॉर्ज फ्रोबेनियस का एक प्रमेय है कि केवल दो वास्तविक चतुष्कोणीय बीजगणित हैं: 2 × 2 आव्यूह वास्तविक से अधिक और हैमिल्टन के वास्तविक चतुष्कोण हैं।

इसी तरह, किसी भी स्थानीय क्षेत्र F पर बिल्कुल दो चतुष्कोणीय बीजगणित होते हैं: F पर 2 × 2 आव्यूह और एक विभाजन बीजगणित है। लेकिन एक स्थानीय क्षेत्र पर चतुष्कोणीय विभाजन बीजगणित सामान्यतः क्षेत्र के ऊपर हैमिल्टन के चतुष्कोण नहीं होते हैं। उदाहरण के लिए, पी-एडिक अंक पर हैमिल्टन के चतुष्कोण केवल एक विभाजन बीजगणित होते हैं जब p 2 होता है। विषम अभाज्य संख्या p के लिए, पी-एडिक हैमिल्टन चतुष्कोण p- पर 2 × 2 आव्यूहों के लिए समरूप होते हैं। यह देखने के लिए कि पी-एडिक हैमिल्टन चतुष्कोण विषम प्रधान p के लिए विभाजन बीजगणित नहीं हैं, निरीक्षण करें कि सर्वांगसमता x2 + y2 = −1 मोड p हल करने योग्य है और इसलिए हेन्सेल की स्वीकृत सिद्धांत द्वारा - यहाँ वह जगह है जहाँ p का विषम होना आवश्यक है - समीकरण

x2 + y2 = −1

पी-एडिक अंकों में हल किया जा सकता है। इसलिए चतुष्कोण

xi + yj + k

मानदंड 0 है और इसलिए इसका गुणक व्युत्क्रम नहीं है।

किसी दिए गए क्षेत्र F के लिए सभी चतुष्कोणीय बीजगणितों के F-बीजगणित समरूपता वर्गों को वर्गीकृत करने का एक तरीका F है और उनके मानक रूपों के तदर्थता वर्गों पर चतुष्कोणीय बीजगणित के समरूपता वर्गों के बीच एक-से-एक पत्राचार का उपयोग करता है।

प्रत्येक चतुष्कोणीय बीजगणित A के लिए, एक द्विघात रूप N (जिसे आदर्श रूप कहा जाता है) को A पर संबद्ध किया जा सकता है जैसे कि

A में सभी x और y के लिए। यह पता चला है कि चतुष्कोणीय F-बीजगणित के लिए संभावित मानक रूप बिल्कुल फिस्टर स्वरुप हैं।

परिमेय संख्याओं पर चतुर्भुज बीजगणित

परिमेय संख्याओं पर चतुर्धातुक बीजगणित का अंकगणितीय सिद्धांत समान है, लेकिन के द्विघात विस्तार की तुलना में अधिक जटिल है।

मान लीजिए कि पर B एक चतुष्कोणीय बीजगणित है और का एक स्थान है, जिसकी पूर्णता है (इसलिए यह या तो p-adic संख्या है, कुछ अभाज्य p या वास्तविक संख्याओं के लिए परिभाषित करें, जो पर एक चतुष्कोणीय बीजगणित है। के लिए दो विकल्प हैं: 2 × 2 आव्यूह या एक विभाजन बीजगणित है।

हम कहते हैं पर विभाजित (या असंबद्ध) है अगर 2 × 2 मैट्रिसेस के उपर के लिए समरूपी है। हम कहते हैं कि B पर 'गैर-विभाजित' (या 'प्रशाखायुक्त') है अगर चतुष्कोणीय विभाजन बीजगणित समाप्त हो गया है। उदाहरण के लिए, तर्कसंगत हैमिल्टन चतुष्कोण 2 और पर गैर-विभाजित है और सभी विषम अभाज्य संख्याओं पर विभाजित करें। परिमेय 2 × 2 आव्यूह सभी स्थानों पर विभाजित हैं।

पर विभाजित परिमेय पर चतुष्कोणीय बीजगणित एक वास्तविक द्विघात क्षेत्र के अनुरूप है और जो गैर-विभाजित है वह एक काल्पनिक द्विघात क्षेत्र के समान है। सादृश्य एक द्विघात क्षेत्र से आता है जिसमें वास्तविक अंतःस्थापन होती है जब एक जनित्र के लिए न्यूनतम बहुपद (क्षेत्र सिद्धांत) वास्तविक पर विभाजित होता है और अन्यथा गैर-वास्तविक अंतःस्थापन होता है। तर्कसंगत चतुष्कोणीय बीजगणित के क्रम में इस समानता की ताकत का एक उदाहरण इकाई समूहों से संबंधित है:

यदि चतुष्कोणीय बीजगणित विभाजित होता है तो यह अनंत है[citation needed] और यह अन्यथा परिमित है,[citation needed] ठीक वैसे ही जैसे द्विघात वलय में किसी क्रम का इकाई समूह वास्तविक द्विघात स्तिथि में अनंत होता है और अन्यथा परिमित होता है।

उन स्थानों की संख्या जहां परिमेय पर चतुष्कोणीय बीजगणित हमेशा सम होता है, और यह परिमेय पर द्विघात पारस्परिकता नियम के बराबर है।

इसके अतिरिक्त, वे स्थान जहाँ B शाखाबद्ध होता है, बीजगणित के रूप में B को समाकृतिकता तक निर्धारित करता है। (दूसरे शब्दों में, परिमेय पर गैर-समरूपी चतुष्कोणीय बीजगणित शाखाओं के समान सम्मुच्चय को साझा नहीं करते हैं।) अभाज्य संख्याओं का उत्पाद जिस पर B शाखन करता है, उसे B का 'विभेदक' कहा जाता है।

यह भी देखें

टिप्पणियाँ

  1. See Pierce. Associative algebras. Springer. Lemma at page 14.
  2. See Milies & Sehgal, An introduction to group rings, exercise 17, chapter 2.
  3. Gille & Szamuely (2006) p.2
  4. Gille & Szamuely (2006) p.3
  5. Gille & Szamuely (2006) p.7
  6. Lam (2005) p.139


संदर्भ

  • Gille, Philippe; Szamuely, Tamás (2006). Central simple algebras and Galois cohomology. Cambridge Studies in Advanced Mathematics. Vol. 101. Cambridge: Cambridge University Press. doi:10.1017/CBO9780511607219. ISBN 0-521-86103-9. Zbl 1137.12001.
  • Lam, Tsit-Yuen (2005). Introduction to Quadratic Forms over Fields. Graduate Studies in Mathematics. Vol. 67. American Mathematical Society. ISBN 0-8218-1095-2. MR 2104929. Zbl 1068.11023.


अग्रिम पठन