एक आव्यूह की समन्वयन
रैखिक बीजगणित में, आइजेनडीकम्पोज़िशन एक आव्यूह का एक विहित रूप में आव्यूह गुणनखंड है, जिससे आव्यूह को इसके आइजन्वेल्यूज़ और आइजन्वेक्टर के संदर्भ में दर्शाया जाता है। इस तरह से केवल विकर्ण आव्यूह को कारक बनाया जा सकता है। जब आव्यूह का गुणनखंड एक सामान्य आव्यूह या वास्तविक सममित आव्यूह होता है, तो अपघटन को वर्णक्रमीय अपघटन कहा जाता है, जिसे वर्णक्रमीय प्रमेय से प्राप्त किया जाता है।
आव्यूह आइजन्वेक्टर और आइजन्वेल्यूज़ का मौलिक सिद्धांत
आयाम N का A (अशून्य) सदिश v एक वर्ग N × N आव्यूह A का एक आइजनवेक्टर है यदि यह प्रपत्र के एक रेखीय समीकरण को संतुष्ट करता है:
कुछ अदिश के लिए λ. तब λ को संगत आइगेन मान कहा जाता है v. ज्यामितीय रूप से बोलते हुए, A के आइजन्वेक्टर वे वैक्टर हैं जो A केवल बढ़ता या सिकुड़ता है, और जिस राशि से वे बढ़ते/सिकुड़ते हैं वह आइगेनवेल्यू है। उपरोक्त समीकरण को आइगेनवैल्यू समीकरण या आइगेनवैल्यू निर्मेय कहा जाता है।
यह आइजन्वेल्यूज़ के लिए एक समीकरण देता है:
हम p(λ) को अभिलाक्षणिक बहुपद कहते हैं, और समीकरण, जिसे अभिलाक्षणिक समीकरण कहा जाता है, अज्ञात λ में एक Nवीं कोटि का बहुपद समीकरण है। इस समीकरण के Nλ अलग-अलग समाधान होंगे, जहां 1 ≤ Nλ ≤ N. समाधानों का सेट, यानी आइगेनवैल्यू, A का स्पेक्ट्रम कहलाता है।[1][2][3]
यदि अदिशों का क्षेत्र बीजगणितीय रूप से बंद है, तो हम p को गुणनखंडित कर सकते हैं:
पूर्णांक ni को आइगेनवैल्यू की बीजगणितीय बहुलता कहा जाता है λi. बीजगणितीय गुणन का योग है N:
प्रत्येक आइगेनवैल्यू के लिए λi, हमारे पास एक विशिष्ट आइगेनवैल्यू समीकरण है
जहाँ 1 ≤ mi ≤ ni प्रत्येक आइगेनवैल्यू समीकरण के लिए रैखिक रूप से स्वतंत्र समाधान के रैखिक संयोजन mi समाधान (एक को छोड़कर जो शून्य वेक्टर देता है) आइगेनवैल्यू से जुड़े ईजेनवेक्टर हैं λi. पूर्णांक mi की ज्यामितीय बहुलता कहलाती है λi. बीजगणितीय बहुलता को ध्यान में रखना महत्वपूर्ण है ni और ज्यामितीय बहुलता mi बराबर हो भी सकता है और नहीं भी, लेकिन हमारे पास हमेशा होता है mi ≤ ni. सबसे सरल मामला नि:संदेह है जब mi = ni = 1. रैखिक रूप से स्वतंत्र ईजेनवेक्टरों की कुल संख्या, Nv, की गणना ज्यामितीय गुणकों के योग द्वारा की जा सकती है
आइजन्वेक्टर को दोहरा सूचकांक का उपयोग करके आइजन्वेल्यूज़ द्वारा अनुक्रमित किया जा सकता है vij किया जा रहा है jवें ईजेनवेक्टर के लिए iवां आइगेनवैल्यू। एकल सूचकांक के सरल अंकन का उपयोग करके ईजेनवेक्टरों को भी अनुक्रमित किया जा सकता है vk, साथ k = 1, 2, ..., Nv.
एक आव्यूह का ईजेनडीकम्पोज़िशन
होने देना A वर्ग बनो n × n आव्यूह के साथ n रैखिक रूप से स्वतंत्र ईजेनवेक्टर qi (कहाँ i = 1, ..., n). तब A के रूप में आव्यूह अपघटन हो सकता है
कहाँ Q वर्ग है n × n आव्यूह जिसका iवाँ स्तंभ ईजेनवेक्टर है qi का A, और Λ विकर्ण आव्यूह है जिसके विकर्ण तत्व संगत आइजन्वेल्यूज़ हैं, Λii = λi. ध्यान दें कि इस तरह से केवल विकर्ण आव्यूह को कारक बनाया जा सकता है। उदाहरण के लिए, दोषपूर्ण आव्यूह (जो एक कतरनी आव्यूह है) को विकर्ण नहीं किया जा सकता। n} ईजेनवेक्टर qi आमतौर पर सामान्यीकृत होते हैं, लेकिन उन्हें होने की आवश्यकता नहीं होती है। का एक गैर-सामान्यीकृत सेट n ईजेनवेक्टर, vi के कॉलम के रूप में भी इस्तेमाल किया जा सकता है Q. इसे इस बात से समझा जा सकता है कि ईजेनवेक्टरों का परिमाण Q की उपस्थिति से अपघटन में रद्द हो जाता है Q−1. यदि आइजन्वेल्यूज़ में से एक λi में एक से अधिक रैखिक रूप से स्वतंत्र ईजेनवेक्टर हैं (अर्थात, की ज्यामितीय बहुलता λi 1 से अधिक है), तो इस आइगेनवैल्यू के लिए ये आइजन्वेक्टर λi पारस्परिक रूप से ऑर्थोगोनल होने के लिए चुना जा सकता है; हालांकि, अगर दो ईजेनवेक्टर दो अलग-अलग ईजेनवैल्यू से संबंधित हैं, तो उनके लिए एक दूसरे के लिए ऑर्थोगोनल होना असंभव हो सकता है (नीचे उदाहरण देखें)। एक विशेष मामला यह है कि अगर A एक सामान्य आव्यूह है, फिर वर्णक्रमीय प्रमेय द्वारा, विकर्ण करना हमेशा संभव होता है A n ऑर्थोनॉर्मल आधार पर {qi}.
अपघटन आइजन्वेक्टर की मौलिक संपत्ति से प्राप्त किया जा सकता है:
रैखिक रूप से स्वतंत्र ईजेनवेक्टर qi अशून्य आइजन्वेल्यूज़ के साथ सभी संभावित उत्पादों के लिए एक आधार (जरूरी नहीं कि orthonormal) बनाते हैं Ax, के लिए x ∈ Cn, जो संबंधित आव्यूह परिवर्तन की छवि (गणित) (या किसी फ़ंक्शन की श्रेणी) के समान है, और आव्यूह का स्तंभ स्थान भी है A. रैखिक रूप से स्वतंत्र ईजेनवेक्टरों की संख्या qi गैर शून्य आइजन्वेल्यूज़ के साथ आव्यूह के रैंक (रैखिक बीजगणित) के बराबर है A, और संबंधित आव्यूह परिवर्तन की छवि (या श्रेणी) के आयाम के साथ-साथ इसके स्तंभ स्थान भी।
रैखिक रूप से स्वतंत्र ईजेनवेक्टर qi आव्यूह परिवर्तन के शून्य स्थान (कर्नेल के रूप में भी जाना जाता है) के लिए शून्य फॉर्म के आधार के साथ (जिसे ऑर्थोनॉर्मल चुना जा सकता है) A.
उदाहरण
2 × 2 वास्तविक आव्यूह A
एक गैर-एकवचन आव्यूह के गुणन के माध्यम से एक विकर्ण आव्यूह में विघटित हो सकता है B
तब
कुछ वास्तविक विकर्ण आव्यूह के लिए .
समीकरण के दोनों पक्षों को बायीं ओर से गुणा करने पर B:
उपरोक्त समीकरण को एक साथ दो समीकरणों में विघटित किया जा सकता है:
आइगेनवैल्यू का फैक्टरिंग करना x और y:
दे
यह हमें दो सदिश समीकरण देता है:
और एक सदिश समीकरण द्वारा प्रतिनिधित्व किया जा सकता है जिसमें दो समाधान शामिल हैं जैसे कि आइगेनवेल्यूज़:
कहाँ λ दो आइजन्वेल्यूज़ का प्रतिनिधित्व करता है x और y, और u वैक्टर का प्रतिनिधित्व करता है a और b.
स्थानांतरण λu बाएं हाथ की ओर और फैक्टरिंग u बाहर
तब से B गैर-एकवचन है, यह आवश्यक है कि u अशून्य है। इसलिए,
इस प्रकार
हमें आव्यूह के लिए आइजन्वेल्यूज़ का समाधान दे रहा है A जैसा λ = 1 या λ = 3, और परिणामी विकर्ण आव्यूह के आइजेनडीकम्पोज़िशन से A इस प्रकार है .
समाधानों को वापस उपरोक्त समकालिक समीकरणों में लाना
समीकरणों को हल करना, हमारे पास है
इस प्रकार आव्यूह B के आइजेनडीकम्पोज़िशन के लिए आवश्यक है A है
वह है:
=== आइजेनडीकम्पोज़िशन === के माध्यम से आव्यूह व्युत्क्रम
अगर एक आव्यूह A को eigendecompose किया जा सकता है और यदि इसका कोई आइजन्वेल्यूज़ शून्य नहीं है, तो A उलटा आव्यूह है और इसके व्युत्क्रम द्वारा दिया गया है
अगर एक सममित आव्यूह है, क्योंकि के ईजेनवेक्टर से बनता है , इसलिए एक ऑर्थोगोनल आव्यूह होने की गारंटी है . इसके अलावा, क्योंकि Λ एक विकर्ण आव्यूह है, इसके व्युत्क्रम की गणना करना आसान है:
व्यावहारिक प्रभाव
जब मापा, वास्तविक आंकड़े के एक आव्यूह पर आइजेनडीकम्पोज़िशन का उपयोग किया जाता है, तो उलटा कार्य कम मान्य हो सकता है जब सभी आइजन्वेल्यूज़ उपरोक्त रूप में अपरिवर्तित उपयोग किए जाते हैं। इसका कारण यह है कि जैसे-जैसे ईजेनवेल्यू अपेक्षाकृत छोटे होते जाते हैं, व्युत्क्रम में उनका योगदान बड़ा होता जाता है। शून्य के पास या माप प्रणाली के शोर पर उन पर अनुचित प्रभाव पड़ेगा और व्युत्क्रम का उपयोग करके समाधान (पहचान) में बाधा आ सकती है।[4] दो न्यूनीकरण प्रस्तावित किए गए हैं: छोटे या शून्य आइजन्वेल्यूज़ को छोटा करना, और इसके नीचे के लोगों के लिए सबसे कम विश्वसनीय आइगेनवैल्यू का विस्तार करना। Tikhonov नियमितीकरण को एक सांख्यिकीय रूप से प्रेरित लेकिन पक्षपाती विधि के रूप में देखें, क्योंकि वे आइगेनवैल्यूज़ को रोल ऑफ करते हैं क्योंकि वे शोर से प्रभावित हो जाते हैं।
पहली शमन विधि मूल आव्यूह के विरल नमूने के समान है, जो उन घटकों को हटाती है जिन्हें मूल्यवान नहीं माना जाता है। हालाँकि, यदि समाधान या पता लगाने की प्रक्रिया शोर स्तर के पास है, तो ट्रंकटिंग उन घटकों को हटा सकती है जो वांछित समाधान को प्रभावित करते हैं।
दूसरा शमन आइगेनवैल्यू का विस्तार करता है ताकि कम मूल्यों का व्युत्क्रम पर बहुत कम प्रभाव पड़े, लेकिन फिर भी योगदान करते हैं, जैसे कि शोर के निकट समाधान अभी भी मिलेंगे।
विश्वसनीय आइगेनवैल्यू यह मानते हुए पाया जा सकता है कि बेहद समान और कम मूल्य के आइजन्वेल्यूज़ माप शोर का एक अच्छा प्रतिनिधित्व है (जो कि अधिकांश प्रणालियों के लिए कम माना जाता है)।
यदि आइजन्वेल्यूज़ मूल्य द्वारा रैंक-सॉर्ट किए जाते हैं, तो विश्वसनीय आइगेनवैल्यू को सॉर्ट किए गए आइजन्वेल्यूज़ के लाप्लास ऑपरेटर को कम करके पाया जा सकता है:[5]
जहां आइजन्वेल्यूज़ a के साथ सब्सक्राइब किए गए हैं s सॉर्ट किए जाने को इंगित करने के लिए। न्यूनीकरण की स्थिति सबसे कम विश्वसनीय आइगेनवैल्यू है। माप प्रणालियों में, इस विश्वसनीय आइगेनवैल्यू का वर्गमूल सिस्टम के घटकों पर औसत शोर है।
कार्यात्मक पथरी
Eigedecomposition मेट्रिसेस की शक्ति श्रृंखला की बहुत आसान गणना के लिए अनुमति देता है। अगर f (x) द्वारा दिया गया है
तब हम उसे जानते हैं
क्योंकि Λ एक विकर्ण आव्यूह है, का कार्य करता है Λ की गणना करना बहुत आसान है:
के ऑफ-विकर्ण तत्व f (Λ) शून्य हैं; वह है, f (Λ) भी एक विकर्ण आव्यूह है। इसलिए गणना कर रहे हैं f (A) प्रत्येक आइजन्वेल्यूज़ पर फ़ंक्शन की गणना करने के लिए कम हो जाता है।
इसी तरह की तकनीक आमतौर पर होलोमॉर्फिक फंक्शनल कैलकुलस के साथ अधिक काम करती है
- Matrix व्युत्क्रम से आइजेनडीकम्पोज़िशन के माध्यम से। एक बार फिर, हम पाते हैं
उदाहरण
जो कार्यों के लिए उदाहरण हैं . आगे, आव्यूह घातीय है।
विशेष आव्यूह के लिए अपघटन
![]() | This section needs expansion. You can help by adding to it. (June 2008) |
कब A सामान्य या वास्तविक सममित आव्यूह है, अपघटन को वर्णक्रमीय अपघटन कहा जाता है, जो वर्णक्रमीय प्रमेय से प्राप्त होता है।
सामान्य आव्यूह
एक जटिल-मूल्यवान वर्ग आव्यूह A सामान्य है (अर्थ A*A = AA*, कहाँ A* संयुग्म संक्रमण है) अगर और केवल अगर इसे विघटित किया जा सकता है
कहाँ U एक एकात्मक आव्यूह है (अर्थ U* = U−1) और Λ = diag(λ1, ..., λn) एक विकर्ण आव्यूह है।[6] कॉलम यू1, ..., मेंn का U एक अलौकिक आधार बनाते हैं और इसके ईजेनवेक्टर हैं A इसी आइजन्वेल्यूज़ λ के साथ1, ..., एलn.
अगर A हर्मिटियन आव्यूह होने के लिए प्रतिबंधित है (A = A*), तब Λ में केवल वास्तविक मूल्यवान प्रविष्टियाँ हैं। अगर A तब एकात्मक आव्यूह तक ही सीमित है Λ अपने सभी मान जटिल इकाई वृत्त पर लेता है, अर्थात, |λi| = 1.
वास्तविक सममित आव्यूह
एक विशेष मामले के रूप में, प्रत्येक के लिए n × n वास्तविक सममित आव्यूह, आइजन्वेल्यूज़ वास्तविक हैं और आइजन्वेक्टर को वास्तविक और ऑर्थोनॉर्मल चुना जा सकता है। इस प्रकार एक वास्तविक सममित आव्यूह A के रूप में विघटित किया जा सकता है
कहाँ Q एक ऑर्थोगोनल आव्यूह है जिसके कॉलम वास्तविक, ऑर्थोनॉर्मल ईजेनवेक्टर हैं A, और Λ एक विकर्ण आव्यूह है जिसकी प्रविष्टियाँ आइजन्वेल्यूज़ हैं A.[7]
उपयोगी तथ्य
=== आइजन्वेल्यूज़ === के बारे में उपयोगी तथ्य
- आइगेनवैल्यू का गुणनफल के निर्धारक के बराबर है A ध्यान दें कि प्रत्येक आइगेनवैल्यू की घात होती है ni, बीजगणितीय बहुलता।
- आइगेनवैल्यू का योग के ट्रेस (रैखिक बीजगणित) के बराबर है A ध्यान दें कि प्रत्येक आइगेनवैल्यू से गुणा किया जाता है ni, बीजगणितीय बहुलता।
- यदि के आइजन्वेल्यूज़ A हैं λi, और A उलटा है, फिर के आइजन्वेल्यूज़ A−1 सरल हैं λ−1
i. - यदि के आइजन्वेल्यूज़ A हैं λi, फिर के आइजन्वेल्यूज़ f (A) सरल हैं f (λi), किसी भी होलोमॉर्फिक फ़ंक्शन के लिए f.
=== ईजेनवेक्टर === के बारे में उपयोगी तथ्य
- अगर A हर्मिटियन आव्यूह और पूर्ण-रैंक है, ईजेनवेक्टरों के आधार को पारस्परिक रूप से ओर्थोगोनल चुना जा सकता है। आइगेनवैल्यू वास्तविक हैं।
- के ईजेनवेक्टर A−1 के आइजन्वेक्टर के समान हैं A.
- आइजन्वेक्टर को केवल गुणक स्थिरांक तक परिभाषित किया जाता है। यानी अगर Av = λv तब cv किसी भी अदिश के लिए एक eigenvector भी है c ≠ 0. विशेष रूप से, −v और eiθv (किसी θ के लिए) भी ईजेनवेक्टर हैं।
- पतित ईजेनवेल्यूज (एक से अधिक ईजेनवेक्टर वाले ईजेनवैल्यू) के मामले में, ईजेनवेक्टरों को रैखिक परिवर्तन की एक अतिरिक्त स्वतंत्रता है, अर्थात, ईजेनवैल्यू साझा करने वाले ईजेनवेक्टरों का कोई भी रैखिक (ऑर्थोनॉर्मल) संयोजन (पतित उप-स्थान में) है स्वयं एक ईजेनवेक्टर (उप-स्थान में)।
=== ईजेनडीकंपोजीशन === के बारे में उपयोगी तथ्य
- A eigendecompose किया जा सकता है अगर और केवल अगर रैखिक रूप से स्वतंत्र आइजन्वेक्टर की संख्या, Nv, एक eigenvector के आयाम के बराबर है: Nv = N
- यदि अदिशों का क्षेत्र बीजगणितीय रूप से बंद है और यदि p(λ) की कोई पुनरावर्तित जड़ें नहीं हैं, अर्थात यदि तब A eigendecompose हो सकता है।
- कथनA eigendecompose किया जा सकता है इसका मतलब यह नहीं है A का व्युत्क्रम होता है क्योंकि कुछ आइजन्वेल्यूज़ शून्य हो सकते हैं, जो व्युत्क्रमणीय नहीं है।
- कथनA का प्रतिलोम होने का अर्थ यह नहीं है A eigendecompose हो सकता है। एक प्रति उदाहरण है , जो एक उलटा दोषपूर्ण आव्यूह है।
=== आव्यूह व्युत्क्रम === के बारे में उपयोगी तथ्य
- A उलटा जा सकता है अगर और केवल अगर सभी आइजन्वेल्यूज़ अशून्य हैं:
- अगर λi ≠ 0 और Nv = N, व्युत्क्रम द्वारा दिया गया है
संख्यात्मक संगणना
ईगेनवैल्यूज की संख्यात्मक गणना
मान लीजिए कि हम किसी दिए गए आव्यूह के आइजन्वेल्यूज़ की गणना करना चाहते हैं। यदि आव्यूह छोटा है, तो हम विशेषता बहुपद का उपयोग करके प्रतीकात्मक रूप से उनकी गणना कर सकते हैं। हालांकि, बड़े मेट्रिसेस के लिए यह अक्सर असंभव होता है, इस मामले में हमें एक संख्यात्मक विश्लेषण का उपयोग करना चाहिए।
व्यवहार में, बड़े आव्यूहों के आइजन्वेल्यूज़ की गणना विशेषता बहुपद का उपयोग करके नहीं की जाती है। बहुपद की गणना करना अपने आप में महंगा हो जाता है, और उच्च-स्तरीय बहुपद की सटीक (प्रतीकात्मक) जड़ों की गणना करना और व्यक्त करना मुश्किल हो सकता है: एबेल-रफिनी प्रमेय का तात्पर्य है कि उच्च-डिग्री (5 या ऊपर) बहुपदों की जड़ें सामान्य रूप से नहीं हो सकती हैं। प्रयोग करके व्यक्त किया जा सकता है {{mvar|n}वें जड़ें। इसलिए, आइजन्वेक्टर और आइजन्वेल्यूज़ खोजने के लिए सामान्य एल्गोरिदम पुनरावृत्त विधि हैं।
बहुपदों की अनुमानित जड़ों के लिए पुनरावृत्त संख्यात्मक एल्गोरिदम मौजूद हैं, जैसे कि न्यूटन की विधि, लेकिन सामान्य तौर पर विशेषता बहुपद की गणना करना और फिर इन विधियों को लागू करना अव्यावहारिक है। एक कारण यह है कि विशेषता बहुपद के गुणांकों में छोटे राउंड-ऑफ त्रुटियां ईगेनवैल्यूज और ईजेनवेक्टरों में बड़ी त्रुटियां पैदा कर सकती हैं: जड़ें गुणांकों का एक अत्यंत बीमार कार्य हैं।[8] एक सरल और सटीक पुनरावृत्ति विधि शक्ति विधि है: एक यादृच्छिक वेक्टर v चुना जाता है और इकाई वेक्टर के अनुक्रम की गणना की जाती है
यह अनुक्रम लगभग हमेशा एक ईजेनवेक्टर में अभिसरण करेगा जो कि सबसे बड़ी परिमाण के ईजेनवेल्यू के अनुरूप है, बशर्ते कि v में ईजेनवेक्टर के आधार पर इस ईजेनवेक्टर का एक गैर-शून्य घटक है (और यह भी प्रदान किया गया है कि सबसे बड़ी परिमाण का केवल एक ईजेनवेल्यू है)। यह सरल एल्गोरिथ्म कुछ व्यावहारिक अनुप्रयोगों में उपयोगी है; उदाहरण के लिए, Google अपने खोज इंजन में दस्तावेज़ों के पृष्ठ रैंक की गणना करने के लिए इसका उपयोग करता है।[9] साथ ही, कई अधिक परिष्कृत एल्गोरिदम के लिए पावर विधि शुरुआती बिंदु है। उदाहरण के लिए, अनुक्रम में न केवल अंतिम सदिश को रखते हुए, बल्कि क्रम में सभी सदिशों के रैखिक फैलाव को देखते हुए, ईजेनवेक्टर के लिए एक बेहतर (तेजी से अभिसरण) सन्निकटन प्राप्त कर सकते हैं, और यह विचार आधार है अर्नोल्डी पुनरावृत्ति।[8] वैकल्पिक रूप से, महत्वपूर्ण क्यूआर एल्गोरिदम भी एक शक्ति पद्धति के सूक्ष्म परिवर्तन पर आधारित है।[8]
ईजेनवेक्टरों की संख्यात्मक गणना
एक बार आइजन्वेल्यूज़ की गणना हो जाने के बाद, आइजन्वेक्टर की गणना समीकरण को हल करके की जा सकती है
गॉसियन विलोपन या रैखिक समीकरणों की प्रणाली का उपयोग करना # रैखिक समीकरणों की प्रणाली को हल करने के लिए एक रैखिक प्रणाली को हल करना।
हालांकि, व्यावहारिक रूप से बड़े पैमाने पर ईजेनवैल्यू विधियों में, ईजेनवेक्टरों की गणना आमतौर पर अन्य तरीकों से की जाती है, जैसे कि ईजेनवैल्यू संगणना का उपोत्पाद। शक्ति पुनरावृत्ति में, उदाहरण के लिए, eigenvector वास्तव में आइगेनवैल्यू से पहले गणना की जाती है (जो आमतौर पर eigenvector के Rayleigh भागफल द्वारा गणना की जाती है)।[8] हर्मिटियन आव्यूह (या किसी सामान्य आव्यूह) के लिए क्यूआर एल्गोरिदम में, ऑर्थोनॉर्मल ईजेनवेक्टरों को एक उत्पाद के रूप में प्राप्त किया जाता है Q एल्गोरिथम के चरणों से मैट्रिसेस।[8] (अधिक सामान्य मैट्रिसेस के लिए, क्यूआर एल्गोरिदम पहले शूर अपघटन उत्पन्न करता है, जिससे ईजेनवेक्टरों को backsubstation प्रक्रिया द्वारा प्राप्त किया जा सकता है।[10]) हर्मिटियन मेट्रिसेस के लिए, विभाजित और जीत आइगेनवैल्यू एल्गोरिथ्म क्यूआर एल्गोरिदम की तुलना में अधिक कुशल है यदि ईजेनवेक्टर और ईजेनवैल्यू दोनों वांछित हैं।[8]
अतिरिक्त विषय
सामान्यीकृत ईजेनस्पेस
याद रखें कि एक ईगेनवैल्यू की ज्यामितीय बहुलता को संबद्ध ईजेनस्पेस के आयाम के रूप में वर्णित किया जा सकता है, कर्नेल (रैखिक बीजगणित) λI − A. बीजगणितीय बहुलता को एक आयाम के रूप में भी माना जा सकता है: यह संबंधित सामान्यीकृत आइगेनस्पेस (प्रथम भाव) का आयाम है, जो आव्यूह का नलस्पेस है (λI − A)k किसी भी पर्याप्त बड़े के लिए k. यही है, यह सामान्यीकृत आइजन्वेक्टर (प्रथम अर्थ) का स्थान है, जहां एक सामान्यीकृत eigenvector कोई वेक्टर होता है जो अंततः 0 हो जाता है λI − A उस पर क्रमिक रूप से पर्याप्त बार लागू होता है। कोई भी eigenvector एक सामान्यीकृत eigenvector है, और इसलिए प्रत्येक eigenspace संबद्ध सामान्यीकृत eigenspace में समाहित है। यह एक आसान प्रमाण प्रदान करता है कि ज्यामितीय बहुलता हमेशा बीजगणितीय बहुलता से कम या उसके बराबर होती है।
इस प्रयोग को नीचे वर्णित सामान्यीकृत ईगेनवैल्यू निर्मेय के साथ भ्रमित नहीं होना चाहिए।
संयुग्मी आइजनवेक्टर
एक संयुग्म eigenvector या conjugate eigenvector एक सदिश है जो इसके संयुग्म के एक स्केलर गुणक में परिवर्तन के बाद भेजा जाता है, जहां स्केलर को रैखिक परिवर्तन के संयुग्मित आइगेनवैल्यू या शंकुवायु कहा जाता है। कोनिजेनवेक्टर और कोनिजेनवैल्यू अनिवार्य रूप से नियमित ईजेनवेक्टर और ईजेनवैल्यू के रूप में समान जानकारी और अर्थ का प्रतिनिधित्व करते हैं, लेकिन तब उत्पन्न होते हैं जब एक वैकल्पिक समन्वय प्रणाली का उपयोग किया जाता है। संगत समीकरण है
उदाहरण के लिए, सुसंगत विद्युत चुम्बकीय प्रकीर्णन सिद्धांत में, रैखिक परिवर्तन A प्रकीर्णन वस्तु द्वारा की गई क्रिया का प्रतिनिधित्व करता है, और ईजेनवेक्टर विद्युत चुम्बकीय तरंग के ध्रुवीकरण राज्यों का प्रतिनिधित्व करते हैं। प्रकाशिकी में, समन्वय प्रणाली को तरंग के दृष्टिकोण से परिभाषित किया जाता है, जिसे फॉरवर्ड स्कैटरिंग एलाइनमेंट (FSA) के रूप में जाना जाता है, और एक नियमित आइगेनवैल्यू समीकरण को जन्म देता है, जबकि राडार में, समन्वय प्रणाली को रडार के दृष्टिकोण से परिभाषित किया जाता है, जिसे बैक के रूप में जाना जाता बैक स्कैटरिंग एलाइनमेंट (BSA), और एक कोनिगेनवैल्यू समीकरण को जन्म देता है।
सामान्यीकृत ईजेनवेल्यू निर्मेय
एक सामान्यीकृत आइगेनवैल्यू निर्मेय (द्वितीय अर्थ) एक (अशून्य) वेक्टर खोजने की निर्मेय है v जो पालन करता है
कहाँ A और B आव्यूह हैं। अगर v कुछ के साथ इस समीकरण का पालन करता है λ, फिर हम कॉल करते हैं v का सामान्यीकृत ईजेनवेक्टर A और B (दूसरे अर्थ में), और λ का सामान्यीकृत आइगेनवैल्यू कहा जाता है A और B (दूसरे अर्थ में) जो सामान्यीकृत ईजेनवेक्टर से मेल खाता है v. के संभावित मान λ को निम्नलिखित समीकरण का पालन करना चाहिए
अगर n रैखिक रूप से स्वतंत्र वैक्टर {v1, …, vn} पाया जा सकता है, जैसे कि प्रत्येक के लिए i ∈ {1, …, n}, Avi = λiBvi, फिर हम मैट्रिसेस को परिभाषित करते हैं P और D ऐसा है कि
फिर निम्नलिखित समानता रखती है
और प्रमाण है
और तबसे P व्युत्क्रमणीय है, तो हम उपपत्ति को समाप्त करते हुए समीकरण को दाईं ओर से इसके व्युत्क्रम से गुणा करते हैं।
फॉर्म के मेट्रिसेस का सेट A − λB, कहाँ λ एक सम्मिश्र संख्या है, जिसे पेंसिल कहा जाता है; आव्यूह पेंसिल शब्द जोड़ी को भी संदर्भित कर सकता है (A, B) मेट्रिसेस का।[11] अगर B उलटा है, तो मूल निर्मेय के रूप में लिखा जा सकता है
जो एक मानक आइगेनवैल्यू निर्मेय है। हालांकि, ज्यादातर स्थितियों में उलटा प्रदर्शन नहीं करना बेहतर होता है, बल्कि मूल रूप से बताई गई सामान्यीकृत ईगेनवैल्यू निर्मेय को हल करना बेहतर होता है। यह विशेष रूप से महत्वपूर्ण है अगर A और B हर्मिटियन मेट्रिसेस हैं, क्योंकि इस मामले में B−1A आमतौर पर हर्मिटियन नहीं है और समाधान के महत्वपूर्ण गुण अब स्पष्ट नहीं हैं।
अगर A और B दोनों सममित या हर्मिटियन हैं, और B भी एक सकारात्मक-निश्चित आव्यूह है, आइजन्वेल्यूज़ λi वास्तविक और ईजेनवेक्टर हैं v1 और v2 अलग-अलग आइजन्वेल्यूज़ के साथ हैं B-ऑर्थोगोनल (v1*Bv2 = 0).[12] इस मामले में, आइजन्वेक्टर को चुना जा सकता है ताकि आव्यूह P ऊपर परिभाषित संतुष्ट करता है
- या ,
और सामान्यीकृत ईजेनवेक्टरों का एक आधार (रैखिक बीजगणित) मौजूद है (यह एक दोषपूर्ण आव्यूह निर्मेय नहीं है)।[11] इस मामले को कभी-कभी हर्मिटियन निश्चित पेंसिल या निश्चित पेंसिल कहा जाता है।[11]
यह भी देखें
- आइगेनवैल्यू गड़बड़ी
- फ्रोबेनियस सहसंयोजक
- गृहस्थ परिवर्तन
- जॉर्डन सामान्य रूप
- मैट्रिसेस की सूची
- आव्यूह अपघटन
- विलक्षण मान अपघटन
- सिल्वेस्टर का सूत्र
टिप्पणियाँ
- ↑ Golub & Van Loan (1996, p. 310)
- ↑ Kreyszig (1972, p. 273)
- ↑ Nering (1970, p. 270)
- ↑ Hayde, A. F.; Twede, D. R. (2002). Shen, Sylvia S. (ed.). "आइगेनवैल्यू, उपकरण शोर और पहचान प्रदर्शन के बीच संबंध पर अवलोकन". Imaging Spectrometry VIII. Proceedings of SPIE. 4816: 355. Bibcode:2002SPIE.4816..355H. doi:10.1117/12.453777.
- ↑ Twede, D. R.; Hayden, A. F. (2004). Shen, Sylvia S; Lewis, Paul E (eds.). "नियमितीकरण द्वारा सहप्रसरण मैट्रिक्स व्युत्क्रम की विस्तार विधि का शोधन और सामान्यीकरण". Imaging Spectrometry IX. Proceedings of SPIE. 5159: 299. Bibcode:2004SPIE.5159..299T. doi:10.1117/12.506993.
- ↑ Horn & Johnson (1985), p. 133, Theorem 2.5.3
- ↑ Horn & Johnson (1985), p. 136, Corollary 2.5.11
- ↑ 8.0 8.1 8.2 8.3 8.4 8.5 Trefethen, Lloyd N.; Bau, David (1997). संख्यात्मक रैखिक बीजगणित. SIAM. ISBN 978-0-89871-361-9.
- ↑ Ipsen, Ilse, and Rebecca M. Wills, Analysis and Computation of Google's PageRank, 7th IMACS International Symposium on Iterative Methods in Scientific Computing, Fields Institute, Toronto, Canada, 5–8 May 2005.
- ↑ Quarteroni, Alfio; Sacco, Riccardo; Saleri, Fausto (2000). "section 5.8.2". संख्यात्मक गणित. Springer. p. 15. ISBN 978-0-387-98959-4.
- ↑ 11.0 11.1 11.2 Bai, Z.; Demmel, J.; Dongarra, J.; Ruhe, A.; Van Der Vorst, H., eds. (2000). "Generalized Hermitian Eigenvalue Problems". Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. Philadelphia: SIAM. ISBN 978-0-89871-471-5.
- ↑ Parlett, Beresford N. (1998). सममित eigenvalue समस्या (Reprint. ed.). Philadelphia: Society for Industrial and Applied Mathematics. p. 345. doi:10.1137/1.9781611971163. ISBN 978-0-89871-402-9.
संदर्भ
- Franklin, Joel N. (1968). Matrix Theory. Dover Publications. ISBN 978-0-486-41179-8.
- Golub, Gene H.; Van Loan, Charles F. (1996), Matrix Computations (3rd ed.), Baltimore: Johns Hopkins University Press, ISBN 978-0-8018-5414-9
- Horn, Roger A.; Johnson, Charles R. (1985). Matrix Analysis. Cambridge University Press. ISBN 978-0-521-38632-6.
- Horn, Roger A.; Johnson, Charles R. (1991). Topics in Matrix Analysis. Cambridge University Press. ISBN 978-0-521-46713-1.
- Kreyszig, Erwin (1972), Advanced Engineering Mathematics (3rd ed.), New York: Wiley, ISBN 978-0-471-50728-4
- Nering, Evar D. (1970), Linear Algebra and Matrix Theory (2nd ed.), New York: Wiley, LCCN 76091646
- Strang, G. (1998). Introduction to Linear Algebra (3rd ed.). Wellesley-Cambridge Press. ISBN 978-0-9614088-5-5.