स्थानीय विश्लेषण
This article does not cite any sources. (July 2008) (Learn how and when to remove this template message) |
गणित में, शब्द स्थानीय विश्लेषण के कम से कम दो अर्थ होते हैं, दोनों पहले प्रत्येक अभाज्य संख्या p से संबंधित समस्या को देखने के विचार से प्राप्त होते हैं, और फिर बाद में प्रत्येक अभाज्य संख्या पर प्राप्त जानकारी को 'p' में एकीकृत करने का प्रयास करते हैं। वैश्विक 'चित्र। ये :श्रेणी:स्थानीयकरण (गणित) दृष्टिकोण के रूप हैं।
समूह सिद्धांत
समूह सिद्धांत में, सिलो प्रमेय द्वारा स्थानीय विश्लेषण शुरू किया गया था, जिसमें जी के क्रम को विभाजित करने वाले प्रत्येक अभाज्य संख्या पी के लिए एक परिमित समूह जी की संरचना के बारे में महत्वपूर्ण जानकारी शामिल है। अध्ययन के इस क्षेत्र को वर्गीकरण की खोज में अत्यधिक विकसित किया गया था। फीट-थॉम्पसन प्रमेय से शुरू होने वाले परिमित सरल समूह, विषम क्रम के समूह हल करने योग्य समूह हैं।
संख्या सिद्धांत
संख्या सिद्धांत में कोई डायोफैंटाइन समीकरण का अध्ययन कर सकता है, उदाहरण के लिए, सभी अभाज्य p के लिए modulo p, समाधान पर बाधाओं की तलाश में। अगला कदम मोडुलो प्राइम शक्तियों को देखना है, और फिर p-adic number|p-adic क्षेत्र में समाधान के लिए। इस प्रकार का स्थानीय विश्लेषण आवश्यक समाधान के लिए परिस्थितियाँ प्रदान करता है। ऐसे मामलों में जहां स्थानीय विश्लेषण (साथ ही शर्त यह है कि वास्तविक समाधान हैं) भी पर्याप्त स्थिति प्रदान करते हैं, कोई कहता है कि हस्से सिद्धांत धारण करता है: यह सर्वोत्तम संभव स्थिति है। यह द्विघात रूपों के लिए करता है, लेकिन निश्चित रूप से सामान्य रूप से नहीं (उदाहरण के लिए अण्डाकार वक्रों के लिए)। देखने की बात यह है कि कोई यह समझना चाहेगा कि किन अतिरिक्त परिस्थितियों की आवश्यकता है, बहुत प्रभावशाली रहा है, उदाहरण के लिए घन रूपों के लिए।
स्थानीय विश्लेषण के कुछ रूप विश्लेषणात्मक संख्या सिद्धांत में हार्डी-लिटिलवुड सर्कल पद्धति के मानक अनुप्रयोगों और एडेल रिंग्स के उपयोग दोनों को रेखांकित करते हैं, जिससे यह संख्या सिद्धांत में एकीकृत सिद्धांतों में से एक बन जाता है।
यह भी देखें
- : श्रेणी: स्थानीयकरण (गणित)
- एक श्रेणी का स्थानीयकरण
- एक मॉड्यूल का स्थानीयकरण
- एक अंगूठी का स्थानीयकरण
- एक टोपोलॉजिकल स्पेस का स्थानीयकरण
- हस सिद्धांत
श्रेणी:संख्या सिद्धांत श्रेणी:परिमित समूह श्रेणी:स्थानीयकरण (गणित)