ट्री (ग्राफ सिद्धांत)

From Vigyanwiki
Trees
Tree graph.svg
A labeled tree with 6 vertices and 5 edges.
Verticesv
Edgesv − 1
Chromatic number2 if v > 1
Table of graphs and parameters

आरेख सिद्धांत में, ट्री एक ऐसा अनुक्रमित आरेख होता है जिसमें किसी भी दो शीर्ष को एक ही पथ से युग्मित किया जाता है, या समरूपतः एक जुड़ा हुआ निर्दिष्टित अनिर्देशित आरेख होता है।[1]एक वन एक ऐसा अनुक्रमित आरेख होता है जिसमें किसी भी दो शीर्ष को अधिकतम एक ही पथ से युग्मित किया जाता है, या समरूपतः एक अचक्रीय निर्देशित आरेख होता है, या समरूपतः ट्री के वियोगीय संघ का एकीकृत संयोजन होता है।

एक पॉलीट्री (या निर्देशित ट्री, या अभिविन्यासित ट्री, या एकलत्रिंशक नेटवर्क) एक ऐसा निर्देशित अक्रांत आरेख (डीएजी ) होता है, जिसका अंतर्निहित अनिर्देशित आरेख एक ट्री होता है एक पॉली वन (या निर्देशित वन या अभिविन्यासित वन) एक ऐसा निर्देशित अक्रांत आरेख होता है, जिसका अंतर्निहित अनिर्देशित आरेख एक वन होता है।

कम्प्यूटर विज्ञान में ट्री के रूप में उल्लिखित विभिन्न प्रकार के डेटा संरचनाएं आरेख सिद्धांत में ट्री होते हैं, यद्यपि ऐसी डेटा संरचनाएं सामान्यतः रूटड ट्री होती हैं। रूटेड ट्री निर्देशित भी हो सकता है, जिसे निर्देशित रूटेड ट्री कहा जाता है। इसमें सभी संबंध रूट को रूट से दूर प्रदर्शित करते है, जिसे इस स्थिति में ट्री या आउट-ट्री कहा जाता है -कुछ लेखकों ने रूटेड ट्री को स्वयं निर्देशित आरेख के रूप में परिभाषित किया है।

रूटेड वन एक रूटेड ट्री के असंयोजित संघ है। रूटेड वन निर्देशित भी हो सकता है, जिसे निर्देशित रूटेड वन कहा जाता है। यदि प्रत्येक रूटेड ट्री में सभी संबंध रूट को रूट से दूर प्रदर्शित करते है, तो उसे एक ब्रांचिंग या आउट-वन कहा जाता है। यदि प्रत्येक रूटेड ट्री में सभी संबंध रूट को रूट की ओर संकेत करते हैं, तो उसे एक विपरीत शाखा या आंतरिक-वन कहा जाता है।

[2]ट्री शब्द का उल्लेख पहली बार 1857 में ब्रिटिश गणितीय आर्थर केली ने किया था।



परिभाषाएँ

ट्री

एक ट्री एक अप्रत्यक्ष आरेख G है,जो निम्न समकक्ष स्थितियों में से किसी एक को पूरा करता है:

  • G जुड़ा हुआ और वह अचक्रीय होता है (कोई चक्र नहीं होता)।
  • G चक्रीय है, और यदि कोई शीर्ष G में युग्मित किया जाता है तो एक सरल चक्र बनता है।
  • G जुड़ा हुआ है, परंतु यदि G से किसी एक शीर्ष को हटा दिया जाए तो यह असंगत हो जाएगा।
  • G जुड़ा हुआ है और 3-शीर्ष पूर्ण आरेख K3 G का लघु नहीं है।
  • G में किन्हीं भी दो शीर्षों को एक अद्वितीय सरल पथ से युग्मित किया जा सकता है।

यदि G के बहुत से शीर्ष हैं, उनमें से n मान लीजिए,तो उपरोक्त कथन निम्न में से किसी भी स्थिति के समतुल्य हैं:

  • G जुड़ा हुआ है और है n − 1 शीर्ष है।
  • G जुड़ा हुआ है, और हर उपआरेख का G शून्य या एक घटना शीर्षों के साथ कम से कम एक शीर्ष सम्मिलित है।
  • G का कोई सरल चक्र नहीं है और इसमें n − 1 शीर्ष है।

आरेख सिद्धांत में कहीं और के रूप में, क्रम-शून्य आरेख को सामान्यतः एक ट्री नहीं माना जाता है,जबकि यह रिक्त रूप से एक आरेख के रूप में जुड़ा हुआ है, बीजगणितीय टोपोलॉजी में यह 0-सम्बद्ध ​​नहीं है,अरिक्‍त पंक्‍ति ट्री के विपरीत, और "शीर्षों के सापेक्ष में एक और शीर्ष" संबंध का उल्लंघन करता है। यद्यपि, इसे शून्य ट्री वाला वन माना जा सकता है।,

एक आंतरिक शीर्ष् कम से कम 2 के डिग्री वाला शीर्ष् होता है। इसी तरह, बाहरी शीर्ष् उस शीर्ष् को कहते हैं जिसका डिग्री 1 हो, एक ट्री में एक शाखा शीर्ष उस शीर्ष को कहा जाता है जिसका डिग्री कम से कम 3 हो।[3]

वन

एक वन एक अभिमुखित आरेख है जिसमें किसी भी दो शीर्ष को अधिकतम एक पथ द्वारा जोड़ा जा सकता है। समतुल्य रूप से,, वन एक अभिमुखित अचक्र आरेख होता है, जिसमें सभी जुड़े हुए घटक ट्री होते हैं; अन्य शब्दों में,आरेख एक ट्री के असंयोजित संघ का बना होता है। विशेष स्थिति के रूप में, शून्य क्रम वाला आरेख एकल ट्री, और एजलेस आरेख, वन के उदाहरण हैं। प्रत्येक ट्री के लिए V - E = 1 होने के कारण, हम वन के अंदर उपस्थित ट्री की संख्या का आसानी से गणना कर सकते हैं, कुल शीर्ष और कुल संकेतों के बीच अंतर को घटा करके। TV - TE = वन में ट्री की संख्या होती है।

पॉलीट्री

पॉलीट्री या निर्देशित ट्री या अभिमुखी ट्री या एकल जुड़ा हुआ नेटवर्क एक निर्देशित अशंकु आरेख होता है जिसका आधारभूत अनिर्देशित आरेख एक ट्री होता है। दूसरे शब्दों में, यदि हम इसके निर्देशित संबंधों को अनिर्देशित संबंधों से बदलें, तो हम एक ऐसे अनिर्देशित आरेख प्राप्त करते हैं जो संयुक्त और अचक्र होता है।

कुछ लेखक वाक्यांश निर्देशित ट्री को उस विषय तक सीमित करें जहां शीर्षों को एक विशेष शीर्ष की ओर निर्देशित किया जाता है, या सभी को एक विशेष शीर्ष से दूर निर्देशित किया जाता है

पॉलीवन

पॉलीवन या निर्देशित वन एक निर्देशित आरेख होता है जिसका अंशकारी अशिखित आरेख एक वन होता है। अर्थात् जब हम इसकी निर्देशित धुरीयों को अनिर्दिष्ट धुरीयों में बदलते हैं, तो हमें एक वन मिलता है जो कि अनुबंधित और अशिखित दोनों होता है। दूसरे शब्दों में, यदि हम इसके निर्देशित किनारों को अप्रत्यक्ष किनारों से प्रतिस्थापित करते हैं, तो हमें एक अप्रत्यक्ष आरेख प्राप्त होता है जो चक्रीय होता है।

कुछ लेखक"निर्देशित वन" शब्द अपने सीमित अर्थ में प्रयोग करते हैं, जहां प्रत्येक जुड़े हुए घटक की सभी संयुक्त तत्व एक विशिष्ट शिखर की ओर निर्देशित होते हैं या एक विशिष्ट शिखर से सभी दिशाओं में निर्देशित होते हैं।

रूट वाला ट्री

रूटेड ट्री एक ट्री होता है जिसमें एक शीर्ष को मूल निर्धारित किया गया होता है। रूटेड ट्री के संबंधों को प्राकृतिक अभिमुखीकरण किया जा सकता है, या तो मूल से दूर या मूल की ओर, जिसके पश्चात संरचना एक निर्देशित रूटेड ट्री बन जाती है। जब एक निर्देशित रूटेड ट्री में मूल से दूर की ओर अभिमुखीकरण होता है, तो उसे ट्री या आउट-ट्री कहा जाता है; जब यह मूल की ओर अभिमुखीकरण होता है, तो उसे विपरीत-ट्री या आंतरिक-ट्री कहा जाता है। ट्री-क्रम एक आंशिक क्रमण होता है जो एक ट्री के शीर्ष पर होता है, जहां u < v है यदि जब मूल से v तक का अद्वितीय पथ u से गुजरता है, तो एक आरेख G का उपआरेख होने वाला रूटेड ट्री T एक सामान्य ट्री होता है यदि G में हर T-पथ के अंत संगणक इस ट्री-क्रम में तुल्यात्मक हैं रूटेड ट्री प्रायः प्रत्येक शीर्ष पर पड़ोसियों के क्रमबद्धता जैसी अतिरिक्त संरचना के साथ, कंप्यूटर विज्ञान में एक महत्वपूर्ण डेटा संरचना होता हैं

जहां ट्री को सामान्यतः मूल रूप में होता है, बिना किसी निर्दिष्ट मूल के ट्री को "मुक्त ट्री" कहा जाता है।

नामपत्रित ट्री ऐसा ट्री होता है जिसमें प्रत्येक शीर्ष को एक अद्वितीय नाम दिया जाता है। n शीर्ष वाले नामपत्रण वाले ट्री के शीर्ष को सामान्यतः नाम 1, 2, ..., n दिए जाते हैं। एक आवर्ती ट्री एक नामपत्रण वाला रूटेड ट्री होता है, जहां शीर्ष की नाम ट्री-क्रम का सम्मान करती हैं (अर्थात, यदि u और v दो शीर्ष हैं और u < v है, तो u का नाम v के नाम से छोटा होता है)।

एक रूटेड ट्री में, शीर्ष v का मूल -शीर्ष वह शीर्ष होता है जो मूल तक पथ पर v से जुड़ा होता है; हर शीर्ष का एक अद्वितीय मूल -शीर्ष होता है, केवल मूल का कोई मूल -शीर्ष नहीं होता है। शीर्ष v का एक बालक एक ऐसा शीर्ष होता है जिसमें v मूल -शीर्ष होता है। [21] शीर्ष v का एक ऊर्ध्वगामी वही शीर्ष होता है जो या तो v का मूल -शीर्ष होता है या v के मूल -शीर्ष का (पुनरावृत्तिक) ऊर्ध्वगामी होता है। शीर्ष v का एक वंशज वही शीर्ष होता है जो या तो v का बालक होता है या v के बालकों में से किसी भी बालक का (पुनरावृत्तिक) वंशज होता है। शीर्ष v के एक संबंधी शीर्ष वही शीर्ष होता है जिसका मूल -शीर्ष v के समान होता है। पत्ती एक ऐसा शीर्ष होता है जिसके कोई बालक नहीं होते हैं। आंतरिक शीर्ष एक शीर्ष होता है जो पत्ती नहीं होता है।

एक रूटेड ट्री में शीर्ष की ऊंचाई वह पथ की लंबाई होती है जो उस शीर्ष से उत्पन्न होकर पत्तियां नीचे की ओर सबसे लंबी होती है। ट्री की ऊंचाई मूल ऊंचाई होती है। शीर्ष की गहनता उसके मूल पथ की लंबाई होती है, यह विभिन्न स्व संतुलन ट्री के संचालन में सामान्यतः आवश्यक होता है। मूल की गहनता और पत्तियों की ऊंचाई शून्य होती है, और एक ट्री जिसमें केवल एक शीर्ष होता है इसलिए एक मूल की गहनता और ऊंचाई शून्य होती है। पारंपरिक रूप से, एक खाली ट्री की गहनता और ऊंचाई -1 होती है।

k-आरी ट्री एक रूटेड ट्री होता है जिसमें प्रत्येक शीर्ष के अधिकतम k बालक होते हैं। 2-अरि ट्री को सामान्यतः बाइनरी ट्री कहा जाता है, जबकि 3-अरि ट्री को कभी-कभी त्रिधातु ट्री कहा जाता है।

क्रमित ट्री

क्रमबद्ध ट्री (या प्लेन ट्री ) एक रूटेड ट्री है जिसमें प्रत्येक शीर्ष के उत्तराधिकारियों के लिए एक क्रमबद्धता निर्दिष्ट की जाती है। इसे "प्लेन ट्री " कहा जाता है क्योंकि उत्तराधिकारियों की क्रमबद्धता, ट्री को समतल में संपुट करने के समान होती है, जहां मूल ऊपर होता है और प्रत्येक शीर्ष के उत्तराधिकारी उस शीर्ष से नीचे होते हैं। विमान में रूट वाले ट्री की संपुटन को देखते हुए, यदि कोई उत्तराधिकारियों की दिशा को ठीक करता है, बाएं से दाएं कहें, तो एक संपुटन उत्तराधिकारियों को आदेश देता है। इसके विपरीत, एक आदेश दिया गया ट्री दिया गया है, और परंपरागत रूप से शीर्ष पर रूट खींच रहा है, फिर एक आदेशित ट्री में बच्चे के कोने को बाएं से दाएं खींचा जा सकता है, जो अनिवार्य रूप से अद्वितीय योजनाकार संपुटन प्रदान करता है।

गुण

  • प्रत्येक ट्री द्विभाज्य आरेख होता है। एक आरेख द्विभाज्य होता है यदि और केवल यदि इसमें विषम लंबाई के चक्र सम्मिलित नहीं हैं। क्योंकि ट्री में कोई चक्र ही नहीं होता है, इसलिए यह द्विभाज्य होता है।
  • केवल गणनीय संख्या में शीर्ष वाले प्रत्येक ट्री एक समतली आलेख होता है।
  • प्रत्येक जुड़ा हुआ आरेख G में एक स्पैनिंग ट्री होता है, जो G के हर शीर्ष को सम्मिलित करता है और जिसकी एज़ भी G की एज़ होती हैं। अधिक विशिष्ट प्रकार के फैले हुए ट्री प्रत्येक जुड़े परिमित आरेख में विद्यमान हैं, इसमें गहराई-पहले खोज ट्री और चौड़ाई-पहले खोज ट्री सम्मिलित हैं डेप्थ-फर्स्ट-सर्च ट्री के अस्तित्व का सामान्यीकरण करते हुए, हर जुड़े हुए आरेख में केवल गिने-चुने शीर्ष के साथ ट्रेमॉक्स का ट्री होता है यद्यपि कुछ असंख्य आरेखों में ऐसा कोई ट्री नहीं होता है।
  • n > 1 के साथ n शीर्ष वाले हर परिमित ट्री में कम से कम दो टर्मिनल शीर्ष (पत्ते) होते हैं। पत्तों की यह न्यूनतम संख्या पथ आरेख की विशेषता है; अधिकतम संख्या, n − 1, केवल स्टार आरेख द्वारा प्राप्त की जाती है। पत्तियों की संख्या कम से कम अधिकतम शीर्ष डिग्री है।
  • ट्री में किन्हीं तीन शीर्षों के लिए, उनके बीच के तीन रास्तों में ठीक एक शीर्ष उभयनिष्ठ होता है। अधिक आम तौर पर, एक आरेख में एक शीर्ष जो तीन शीर्षों में से तीन सबसे छोटे पथों से संबंधित होता है, इन शीर्षों का माध्यिका कहलाता है। क्योंकि एक ट्री में हर तीन शीर्ष में एक अद्वितीय माध्यिका होती है, हर ट्री एक माध्यिका आरेख होता है।
  • हर ट्री का एक केंद्र होता है जिसमें एक शीर्ष या दो आसन्न शीर्ष होते हैं। केंद्र प्रत्येक सबसे लंबे पथ में मध्य शीर्ष या मध्य दो शीर्ष होता है। इसी तरह, प्रत्येक n शीर्ष ट्री में एक केन्द्रक होता है जिसमें एक शीर्ष या दो आसन्न शीर्ष होते हैं। पहले मामले में शीर्ष को हटाने से ट्री को n/2 शीर्ष से कम के सब ट्री में विभाजित किया जाता है। दूसरे मामले में, दो केन्द्रकीय शीर्षों के बीच के किनारे को हटाने से ट्री ठीक n/2 शीर्षों के दो उप ट्री में विभाजित हो जाता है।

गणना

नाम वाले ट्री

केली का सूत्र कहता है कि n लेबल वाले शीर्ष पर nn−2 ट्री होते हैं। प्रूफर क्रम का उपयोग करके एक प्रसिद्ध सिद्धांत का प्रमाण दिया जाता है, जो स्वतः मजबूत परिणाम दिखाता है: d1, d2, ..., dn डिग्री वाले 1, 2, ..., n शीर्ष की ट्री की संख्या प्रतिस्थापनीय संख्या होती है।

एक और सामान्य समस्या है अविचालित आरेख में स्पैनिंग ट्री की गणना करना, जिसे मैट्रिक्स ट्री सूत्र द्वारा संबोधित किया जाता है। (केली का सूत्र पूर्ण आरेख में स्पैनिंग ट्री के विशेष स्थिति हैं।) आकार के अतिरिक्त सभी उप-ट्री की गणना करने की समान समस्या सामान्य स्थिति में P-पूर्ण होती है (Jerrum (1994)).

बिना नाम वाले ट्री

अविलेखित मुक्त ट्री की संख्या की गणना करना एक कठिन समस्या है। n शीर्ष वाले ट्री की संख्या t(n), आरेख समाकृतिकता के प्रति कोई समाप्त सूत्र ज्ञात नहीं है।

1, 1, 1, 1, 2, 3, 6, 11, 23, 47, 106, 235, 551, 1301, 3159, … .

टी(एन) के पहले कुछ मान हैं(ओईआईएस में)।ओटर (1948) ने उपगामी अनुमान को सिद्ध किया

साथ ही C ≈ 0.534949606... और α ≈ 2.95576528565... . यहां ~ चिह्न का अर्थ है

यह n सिरों वाले बिना लेबल वाले रूट वाले ट्री की संख्या r(n) के लिए उनके स्पर्शोन्मुख अनुमान का परिणाम है

साथ D ≈ 0.43992401257... और उपरोक्त के समान a (सी एफ नुथ (1997)अध्याय 2.3.4.4 और

r(n) के पहले कुछ मान हैं[4]

1, 1, 2, 4, 9, 20, 48, 115, 286, 719, 1842, 4766, 12486, 32973, …

ट्री के प्रकार

  • पथ आरेख में एक पंक्ति में व्यवस्थित n शीर्ष होते हैं, जिससे i = 1, ..., n - 1 के लिए शीर्ष i और i + 1 एक किनारे से जुड़े होते हैं।.
  • तारकीय ट्री में एक केंद्रीय शीर्ष होता है जिसे रूट कहा जाता है और इससे जुड़े कई पथ आरेख होते हैं। अधिक औपचारिक रूप से, एक ट्री तारे जैसा होता है यदि उसके पास 2 से अधिक डिग्री का ठीक एक शीर्ष होता है।
  • तारा ट्री एक ऐसा ट्री है जिसमें एक आंतरिक शीर्ष (और n - 1 पत्ते) होते हैं। दूसरे शब्दों में, n क्रम का एक तारा ट्री n क्रम का एक ट्री है, जिसमें अधिक से अधिक पत्ते होते हैं।
  • कैटरपिलर ट्री एक ट्री है जिसमें सभी शीर्ष एक केंद्रीय पथ उपआरेख की दूरी 1 के अंदर हैं
  • लॉबस्टर ट्री एक ऐसा ट्री है, जिसके सभी शीर्ष एक केंद्रीय पथ उपआरेख की दूरी 2 के अंदर हैं।
  • डी डिग्री का एक नियमित ट्री प्रत्येक शीर्ष पर डी किनारों वाला अनंत ट्री है। ये मुक्त समूहों के केली आरेख और टिट्स बिल्डिंग के सिद्धांत के रूप में उत्पन्न होते हैं।।

यह भी देखें

टिप्पणियाँ

  1. Bender & Williamson 2010, p. 171.
  2. Cayley (1857) "On the theory of the analytical forms called trees," Philosophical Magazine, 4th series, 13 : 172–176.
    However it should be mentioned that in 1847, K.G.C. von Staudt, in his book Geometrie der Lage (Nürnberg, (Germany): Bauer und Raspe, 1847), presented a proof of Euler's polyhedron theorem which relies on trees on pages 20–21. Also in 1847, the German physicist Gustav Kirchhoff investigated electrical circuits and found a relation between the number (n) of wires/resistors (branches), the number (m) of junctions (vertices), and the number (μ) of loops (faces) in the circuit. He proved the relation via an argument relying on trees. See: Kirchhoff, G. R. (1847) "Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird" (On the solution of equations to which one is led by the investigation of the linear distribution of galvanic currents), Annalen der Physik und Chemie, 72 (12) : 497–508.
  3. DeBiasio, Louis; Lo, Allan (2019-10-09). "कुछ शाखा शीर्षों के साथ फैले पेड़". arXiv:1709.04937 [math.CO].
  4. See Li (1996).


संदर्भ


अग्रिम पठन