स्मेक्टाइट

From Vigyanwiki
Revision as of 15:47, 8 June 2023 by alpha>Abhishek (Abhishek moved page एक प्रकार की मिट्टी to स्मेक्टाइट without leaving a redirect)
स्मेक्टाइट मिट्टी की स्कैनिंग इलेक्ट्रॉन माइक्रोस्कोप (SEM) तस्वीर - आवर्धन 23,500 - अमेरिकी भूवैज्ञानिक सर्वेक्षण - टकअप कैन्यन
एक स्मेक्टाइट-समृद्ध बेंटोनाइट का विशिष्ट दरार प्रतिरूप इसके सूखने और सिकुड़ने के बाद

स्मेक्टाइट (रेह की मिट्‍टी) (प्राचीन ग्रीक से σμηκτός स्मेक्टोस 'लुब्रिकेटेड'; σμηκτρίς स्मेक्ट्रिस 'वॉकर्स भूमि', 'फुलर्स भूमि'; रबिंग भूमि; पृथ्वी जिसमें सफाई का गुण है)[1] विभिन्न स्फीति पत्रक सिलिकेट (फाइलोसिलिकेट) का एक खनिज मिश्रण है, जिसमें तीन-परत 2: 1 (टीओटी) संरचना होती है और मिट्टी के खनिजों से संबंधित होती है। स्मेक्टाइट में मुख्य रूप से मॉन्टमॉरिलोनाइट होता है, लेकिन इसमें प्रायः स्फटिक और केल्साइट जैसे द्वितीयक खनिज हो सकते हैं। [2]


शब्दावली

मिट्टी के खनिज विज्ञान में, स्फीति मिट्टी के एक वर्ग को इंगित करने के लिए स्मेक्टाइट मॉन्टमोरोलाइट (एक शुद्ध मिट्टी खनिज चरण का नाम भी) का पर्याय है। स्मेक्टाइट शब्द का प्रयोग सामान्यतः यूरोप और यूके में किया जाता है, जबकि उत्तरी अमेरिका में मॉन्टमोरोलाइट शब्द को प्राथमिकता दी जाती है, लेकिन दोनों शब्द समान हैं और इन्हें एक दूसरे के लिए उपयोग किया जा सकता है। औद्योगिक और वाणिज्यिक अनुप्रयोगों के लिए, बेंटोनाइट शब्द का उपयोग अधिकतर स्मेक्टाइट या मॉन्टमोरिलोनाइट के स्थान पर किया जाता है।

खनिज संरचना

2:1 मिट्टी के खनिज क्रिस्टलोग्राफिक संरचना क्रमशः टेट्राहेड्रा-अष्टभुजाकार-टेट्राहेड्रा (टीओटी परत इकाई) की तीन आरोपित चादरों से बनी है

2:1 परत (TOT) संरचना में दो सिलिकॉन डाइऑक्साइड (SiO2) चतुष्फलकीय आणविक ज्यामिति (T) पटल जो स्थिर वैद्युत विक्षेप रूप से एक Al2O3 (गिब्साइट), या Fe2O3 अष्टभुजाकार आणविक ज्यामिति (O) केंद्रीय परत के माध्यम से तिर्यक बद्ध हैं। टीओटी प्राथमिक पटल एक दूसरे से कठोरतापूर्वक जुड़ी नहीं हैं, लेकिन एक मुक्त स्थान से अलग होती हैं: अंतःस्तर जलयोजितकटियन और पानी के गुणों की मेजबानी करती है। अंतःस्तर स्थल में पानी और धनायनों के प्रतिवर्ती समावेश के कारण स्मेक्टाइट सूज सकता है।

दो बाहरी सिलिका टेट्राहेड्रल परतों में अल (III) परमाणुओं द्वारा Si (IV) परमाणुओं के आइसोमोर्फिक प्रतिस्थापन के कारण और Mg2 + या Fe2 + आंतरिक जिबसाइट ऑक्टाहेड्रल परत में धनायन द्वारा Al (III) या Fe (III) परमाणुओं के प्रतिस्थापन के कारण TOT पटल नकारात्मक रूप से चार्ज होती हैं। Si (IV) द्वारा उत्पन्न किए गए +4 शुल्क के रूप में, और सामान्यतः आसपास के ऑक्सीजन परमाणुओं से -4 शुल्कों द्वारा मुआवजा दिया जाता है, अल (III) द्वारा सी (IV) के प्रतिस्थापन के कारण +3 हो जाता है, एक विद्युत असंतुलन होता है: +3 -4 = -1। टीओटी परत में नकारात्मक आवेशों की अधिकता की भरपाई अंतःस्तर में धनात्मक धनायनों की उपस्थिति से की जाती है। यही तर्क टीओटी प्राथमिक इकाई की जिबसाइट केंद्रीय परत पर भी लागू होता है जब एक Al3+ आयन को गिब्साइट अष्टभुजाकार में Mg2+ आयन द्वारा प्रतिस्थापित किया जाता है। विद्युत असंतुलन +2 -3 = -1 है।

स्फीति प्रक्रिया में अंतःस्तर धनायन की भूमिका

शुद्ध मोंटमोरिलोनाइट की विस्तृत आणविक संरचना, स्मेक्टाइट समूह का सबसे अच्छा ज्ञात अंत-सदस्य। दो लगातार टीओटी परतों के बीच अंतःस्तर स्थल जलयोजित धनायन से भरा होता है (मुख्य रूप से Na+
और Ca2+
आयन) टीओटी परतों के नकारात्मक विद्युत आवेशों की भरपाई करते हैं और पानी के अणुओं के साथ अंतःस्तर विस्तार का कारण बनते हैं।

स्मेक्टाइट अंतःस्तर में मुख्य धनायन Na+ और Ca2+ हैं। स्मेक्टाइट की उच्चतम स्फीति के लिए सोडियम धनायन उत्तर्दायी होते हैं जबकि कैल्शियम आयनों में स्फीति के गुण कम होते हैं। कैल्शियम स्मेक्टाइट में सोडियम स्मेक्टाइट की तुलना में काफी कम स्फीति क्षमता होती है, लेकिन सूखने पर सिकुड़ने का खतरा भी कम होता है। [3]

धनायन के जलयोजन की घात और उनके संगत जलयोजित त्रिज्या फाइलोसिलिकेट्स के स्फीति या सिकुड़ने वाले व्यवहार की व्याख्या करते हैं। अन्य उद्धरण जैसे Mg2+ और K+ आयन और भी अधिक विपरीत प्रभाव प्रदर्शित करते हैं: अत्यधिक जलयोजित मैग्नीशियम आयन वर्मीक्यूलाईट (पूरी तरह से विस्तारित इंटरलेयर) के रूप में "सूजन" होते हैं जबकि खराब हाइड्रेटेड पोटेशियम आयन इलाइट (पूरी तरह से ढह गई अंतःस्तर) की तरह "कोलैपर्स" होते हैं।

जैसा कि स्मेक्टाइट्स की अंतःस्तर स्थल अधिक खुली है और इसलिए पानी और पिंजरों के लिए अधिक आसानी से सुलभ है, स्मेक्टाइट्स सामान्यतः मिट्टी में पाए जाने वाले मिट्टी के खनिजों की उच्चतम कटियन-विनिमय क्षमता (सीईसी) प्रदर्शित करते हैं। आंतरिक प्रणाल संरचना के साथ केवल अधिक विस्तार योग्य वर्मीक्यूलाइट और कुछ दुर्लभ एलुमिनो-सिलिकेट खनिज (जिओलाइट्स) स्मेक्टाइट की तुलना में उच्च सीईसी प्रदर्शित कर सकते हैं।

गठन की प्रक्रिया

विशिष्ट ज्वालामुखीय विस्फोट प्लम जिसका समुद्री जल के संपर्क के बाद अपक्षय ज्वालामुखीय राख स्मेक्टाइट का मुख्य स्रोत है। अधिकांश अनाकार सिलिका के निक्षालन से ओब्सीडियन का आंशिक विघटन होता है, जो ज्वालामुखी कांच का मुख्य घटक है।

बेसाल्ट, गैब्रो, और सिलिका युक्त ज्वालामुखीय काँच (जैसे, झांवा, ओब्सीडियन, रयोलाइट, डैकाइट) के अपक्षय से स्मेक्टाइट बनते हैं। ज्वालामुखी ऊष्ण जलीय प्रणाली (जैसे उष्णोत्स प्रणाली) में कई स्मेक्टाइट्स बनते हैं, जहां सरंध्रता या ज्वालामुखीय राख निक्षेप (पमिस, पॉज़ोलन) की दरार के माध्यम से गर्म पानी में अधिकांश अनाकार सिलिका (SiO2 का 50 wt% तक भंग किया जा सकता है) स्मेक्टाइट को जगह में छोड़कर घुल जाता है। अंडालूसिया (स्पेन) में अल्मेरिया के दक्षिण-पूर्व क्षेत्र में कैबो डी गाटा-निजर प्राकृतिक पार्क के बेंटोनाइट निक्षेप (सेराटा डी निजर) के गठन के लिए यह तंत्र उत्तर्दायी है। व्योमिंग MX-80 बेंटोनाइट का गठन क्रीटेशस के उपरान्त इसी तरह से हुआ था जब ज्वालामुखीय राख अमेरिकी महाद्वीप पर एक आंतरिक समुद्र में गिर रही थी। अत्यधिक सरंध्रता (एक बड़े और आसानी से सुलभ विशिष्ट सतह क्षेत्र के साथ) और बहुत प्रतिक्रियाशील ज्वालामुखी राख ने समुद्री जल के साथ तेजी से प्रतिक्रिया करी थी। सिलिका जलापघटन के कारण, अधिकांश सिलिकॉन डाइऑक्साइड को समुद्री जल में भंग कर दिया गया था और स्मेक्टाइट्स के गठन को उत्पन्न देने वाली राख से हटा दिया गया था। कई समुद्री मिट्टी के जमाव में पाए जाने वाले स्मेक्टाइट्स प्रायः इस तरह से बनते हैं क्योंकि यह बेल्जियम में पाए जाने वाले यप्रेशियन मिट्टी की स्तिथि में है और स्मेक्टाइट्स में बहुत समृद्ध है।

औद्योगिक अनुप्रयोग

स्मेक्टाइट्स सामान्यतः बहुत ही विविध औद्योगिक अनुप्रयोगों में उपयोग किए जाते हैं। सिविल इंजीनियरिंग कार्यों में, पार्श्व दीवारों का समर्थन करने और उनके पतन से बचने के लिए जमीन में गहरी और संकीर्ण खाइयों की खुदाई करते समय इसे नियमित रूप से एक मोटी बेंटोनाइट घोल के रूप में उपयोग किया जाता है। यह प्रवेधन द्रव पदार्थ के लिए मिट्टी के रूप में भी प्रयोग किया जाता है। स्मेक्टाइट्स, जिन्हें सामान्यतः बेंटोनाइट कहा जाता है, गहरे भूगर्भीय खजाने में उच्च-स्तरीय विघटनाभिक अपशिष्ट के आसपास की जगह को भरने के लिए बफर और बैकफिल सामग्री के रूप में उम्मीदवार हैं। स्मेक्टाइट्स चित्रण में योज्य के रूप में या विभिन्न तैयारियों के लिए गाढ़ा करने वाले स्थूलक के रूप में भी काम करते हैं।

यह भी देखें

संदर्भ

  1. CNRLT (2012). "Smectite : Définition de smectite" [Smectite: Definition of smectite]. cnrtl.fr (in français). Retrieved 28 July 2022. Terre qui a la propriété de nettoyer. Earth that has the property of cleaning
  2. Friedrich Klockmann (1978) [1891], Paul Ramdohr, Hugo Strunz (ed.), Klockmanns Lehrbuch der Mineralogie (in German) (16. ed.), Stuttgart: Enke, p. 753, ISBN 3-432-82986-8{{citation}}: CS1 maint: unrecognized language (link)
  3. Barast, Gilles; Razakamanantsoa, Andry-Rico; Djeran-Maigre, Irini; Nicholson, Timothy; Williams, David (June 2017). "रियोलॉजिकल विवरण द्वारा प्राकृतिक और संशोधित बेंटोनाइट्स के सूजन गुण". Applied Clay Science. 142: 60–68. doi:10.1016/j.clay.2016.01.008.


अग्रिम पठन

  • Meunier, Alain (2005). Clays. Springer Science & Business Media. pp. 108–. ISBN 978-3-540-21667-4.
  • Mitchell, J. K. (2001). Physicochemistry of soils for geoenvironmental engineering. In Geotechnical and geoenvironmental engineering handbook (pp. 691-710). Springer, Boston, MA.
  • Mitchell, J. K., & Soga, K. (2005). Fundamentals of soil behavior (Vol. 3). New York: John Wiley & Sons.
  • Mackenzie, R. C., & Mitchell, B. D. (1966). Clay mineralogy. Earth-Science Reviews, 2, 47-91.
  • Jeans, C. V., Merriman, R. J., Mitchell, J. G., & Bland, D. J. (1982). Volcanic clays in the Cretaceous of southern England and Northern Ireland. Clay Minerals, 17(1), 105-156. https://doi.org/10.1180/claymin.1982.017.1.10
  • Wagner, J. F. (2013). Chapter 9: Mechanical properties of clays and clay minerals. In: Developments in Clay Science, 5, 347-381. Elsevier. https://doi.org/10.1016/B978-0-08-098258-8.00011-0


बाहरी संबंध