शून्य आकारिता
श्रेणी सिद्धांत में, गणित की एक शाखा, एक शून्य रूपवाद एक विशेष प्रकार का रूपवाद है जो एक शून्य वस्तु से और उससे आकारिकी जैसे गुणों को प्रदर्शित करता है।
परिभाषाएँ
मान लीजिए C एक श्रेणी (गणित) है, और f : X → Y C में एक रूपवाद है। आकृतिवाद f को निरंतर आकारिकी कहा जाता है (या कभी-कभी शून्य छोड़ दिया जाता है) morphism) यदि किसी वस्तु (श्रेणी सिद्धांत) के लिए 'W C और किसी में g, h : W → X, एफजी = एफएच। दोहरी रूप से, f को 'कोकॉन्स्टेंट मोर्फिज्म' (या कभी-कभी 'सही शून्य मोर्फिज्म') कहा जाता है, यदि किसी वस्तु Z के लिए 'C' और किसी भी g में, h : Y → Z, gf = hf। एक 'शून्य रूपवाद' वह है जो एक स्थिर आकारिकी और सह-अस्थिर आकारिकी दोनों है।
एक 'शून्य आकारिकी वाली श्रेणी' वह है जहाँ 'C' में प्रत्येक दो वस्तुओं A और B के लिए, एक निश्चित आकारिकी 0 हैAB : A → B, और आकारिकी का यह संग्रह ऐसा है कि सभी वस्तुओं X, Y, Z में 'C' और सभी morphisms f : Y → Z, g : X → Y के लिए, निम्न आरेख बदल जाता है:
आकारिकी 0XY आवश्यक रूप से शून्य आकारिकी हैं और शून्य आकारिकी की संगत प्रणाली बनाते हैं।
यदि C शून्य morphisms वाली श्रेणी है, तो 0 का संग्रहXY निराला है।[1] शून्य रूपवाद को परिभाषित करने का यह तरीका और वाक्यांश को शून्य आकारिकी वाली श्रेणी अलग से दुर्भाग्यपूर्ण है, लेकिन यदि प्रत्येक होम सेट में "शून्य आकारिकी" है, तो श्रेणी में शून्य आकारिकी है।
उदाहरण
- In the category of groups (or of modules), a zero morphism is a homomorphism f : G → H that maps all of G to the identity element of H. The zero object in the category of groups is the trivial group 1 = {1}, which is unique up to isomorphism. Every zero morphism can be factored through 1, i. e., f : G → 1 → H.
- More generally, suppose C is any category with a zero object 0. Then for all objects X and Y there is a unique sequence of morphisms
- 0XY : X → 0 → Y
- If C is a preadditive category, then every hom-set Hom(X,Y) is an abelian group and therefore has a zero element. These zero elements form a compatible family of zero morphisms for C making it into a category with zero morphisms.
- The category of sets does not have a zero object, but it does have an initial object, the empty set ∅. The only right zero morphisms in Set are the functions ∅ → X for a set X.
संबंधित अवधारणाएं
यदि C में एक शून्य वस्तु 0 है, C में दो वस्तुएँ X और Y दी गई हैं, तो कैनोनिकल morphisms f : X → 0 और g : 0 हैं → वाई । फिर, gf मोर में एक शून्य रूपवाद हैC(एक्स, वाई)। इस प्रकार, शून्य वस्तु वाली प्रत्येक श्रेणी एक ऐसी श्रेणी है जिसमें रचना 0 द्वारा दी गई शून्य आकारिकी होती हैXY : एक्स → '0' → वाई।
यदि किसी श्रेणी में शून्य आकारिकी है, तो उस श्रेणी में किसी भी आकृतिवाद के लिए कर्नेल (श्रेणी सिद्धांत) और cokernel की धारणा को परिभाषित किया जा सकता है।
संदर्भ
- Section 1.7 of Pareigis, Bodo (1970), Categories and functors, Pure and applied mathematics, vol. 39, Academic Press, ISBN 978-0-12-545150-5
- Herrlich, Horst; Strecker, George E. (2007), Category Theory, Heldermann Verlag.
टिप्पणियाँ
- ↑ "शून्य आकारिकी वाली श्रेणी". Math.stackexchange.com. 2015-01-17. Retrieved 2016-03-30.
[Category:0 (numbe