सामान्य रूपवाद
श्रेणी सिद्धांत और गणित के लिए इसके अनुप्रयोगों में, सामान्य एकरूपता या कॉन्नॉर्मल आकारिता विशेष रूप से अच्छी तरह से व्यवहार किया जाने वाला रूपवाद है। सामान्य श्रेणी ऐसी श्रेणी है जिसमें प्रत्येक मोनोमोर्फिज्म सामान्य होता है। असामान्य श्रेणी वह है जिसमें प्रत्येक अधिरूपता असामान्य होता है।
परिभाषा
मोनोमोर्फिज्म सामान्य है यदि यह कुछ आकृतिवाद का कर्नेल (श्रेणी सिद्धांत) है, और एपिमोर्फिज्म सामान्य है यदि यह कुछ रूपवाद का कोकर्नेल (श्रेणी सिद्धांत) है।
श्रेणी सी असामान्य है यदि यह सामान्य और असामान्य दोनों है। लेकिन ध्यान दें कि कुछ लेखक सामान्य शब्द का उपयोग केवल यह इंगित करने के लिए करेंगे कि सी असामान्य है।[citation needed]
उदाहरण
समूहों की श्रेणी में, एच से जी तक मोनोमोर्फिज्म एफ सामान्य है अगर और केवल अगर इसकी छवि जी का सामान्य उपसमूह है। विशेष रूप से, यदि एच जी का उपसमूह है, तो एच से जी तक समावेशन मानचित्र i है मोनोमोर्फिज्म, और सामान्य होगा अगर और केवल अगर H, G का सामान्य उपसमूह है। वास्तव में, यह मोनोमोर्फिज्म के लिए सामान्य शब्द का मूल है।[citation needed]
दूसरी ओर, समूहों की श्रेणी में प्रत्येक एपिमोर्फिज्म कॉन्नॉर्मल है (चूंकि यह अपने स्वयं के कर्नेल का कोकर्नेल है), इसलिए यह श्रेणी कॉन्नॉर्मल है।
एबेलियन श्रेणी में, प्रत्येक मोनोमोर्फिज्म इसके कोकर्नेल का कर्नेल है, और प्रत्येक एपिमोर्फिज्म इसके कर्नेल का कर्नेल है। इस प्रकार, एबेलियन श्रेणियां हमेशा द्विसामान्य होती हैं। एबेलियन समूहों की श्रेणी एबेलियन श्रेणी का मौलिक उदाहरण है, और तदनुसार एबेलियन समूह का प्रत्येक उपसमूह सामान्य उपसमूह है।
संदर्भ
- Section I.14 Mitchell, Barry (1965). Theory of categories. Pure and applied mathematics. Vol. 17. Academic Press. ISBN 978-0-124-99250-4. MR 0202787.