रदरफोर्ड स्कैटरिंग

From Vigyanwiki
Revision as of 11:49, 3 May 2023 by alpha>Indicwiki (Created page with "{{Short description|Elastic scattering of charged particles by the Coulomb force}} कण भौतिकी में, रदरफोर्ड स्कैटरिं...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

कण भौतिकी में, रदरफोर्ड स्कैटरिंग कूलम्ब इंटरेक्शन द्वारा आवेशित कणों का लोचदार बिखराव है। यह 1911 में अर्नेस्ट रदरफोर्ड द्वारा समझाई गई एक भौतिक घटना है[1] इससे परमाणु के ग्रहीय रदरफोर्ड मॉडल और अंततः बोहर मॉडल का विकास हुआ। रदरफोर्ड स्कैटरिंग को पहले कूलम्ब स्कैटरिंग कहा जाता था क्योंकि यह केवल स्थिर विद्युत (कूलॉम्ब) क्षमता पर निर्भर करता है, और कणों के बीच न्यूनतम दूरी पूरी तरह से इस क्षमता द्वारा निर्धारित की जाती है। सोने के परमाणु नाभिक के खिलाफ अल्फा कणों की शास्त्रीय रदरफोर्ड बिखरने की प्रक्रिया लोचदार बिखरने का एक उदाहरण है क्योंकि न तो अल्फा कण और न ही सोने के नाभिक आंतरिक रूप से उत्तेजित होते हैं। रदरफोर्ड सूत्र (नीचे देखें) बड़े लक्ष्य नाभिक की पुनरावृत्ति गतिज ऊर्जा की उपेक्षा करता है।

प्रारंभिक खोज 1909 में हंस गीजर और अर्नेस्ट मार्सडेन द्वारा की गई थी जब उन्होंने रदरफोर्ड के सहयोग से गीजर-मार्सडेन प्रयोग किया था, जिसमें उन्होंने केवल कुछ परमाणुओं की मोटी सोने की पत्ती की पन्नी पर अल्फा कणों (हीलियम नाभिक) का एक बीम छोड़ा था। प्रयोग के समय, परमाणु को बेर-पुडिंग मॉडल माना जाता था (जैसा कि जे. जे. थॉमसन द्वारा प्रस्तावित किया गया था), नकारात्मक रूप से आवेशित इलेक्ट्रॉनों (प्लम) के साथ एक सकारात्मक गोलाकार मैट्रिक्स (पुडिंग) में जड़ी होती है। यदि प्लम-पुडिंग मॉडल सही था, तो पॉज़िटिव पुडिंग, एक केंद्रित परमाणु नाभिक के सही मॉडल की तुलना में अधिक फैला हुआ होने के कारण, इतने बड़े कूलम्बिक बलों को लागू करने में सक्षम नहीं होगा, और अल्फा कणों को केवल छोटे कोणों से विक्षेपित किया जाना चाहिए। जैसे वे गुजरते हैं।

चित्र 1. एक क्लाउड कक्ष में, बिंदु 1 के निकट लीड-210 पिन स्रोत से 5.3 MeV अल्फा कण ट्रैक बिंदु 2 के पास रदरफोर्ड बिखराव से गुज़रता है, जो लगभग 30° के कोण से विक्षेपित होता है। यह एक बार फिर बिंदु 3 के पास बिखर जाता है, और अंत में गैस में रुक जाता है। कक्ष गैस में लक्ष्य नाभिक नाइट्रोजन, ऑक्सीजन, कार्बन या हाइड्रोजन नाभिक हो सकता था। इसने लोचदार टक्कर में पर्याप्त गतिज ऊर्जा प्राप्त की जिससे बिंदु 2 के पास एक छोटा दृश्यमान रीकॉइलिंग ट्रैक बन सके। (पैमाना सेंटीमीटर में है।)

हालांकि, दिलचस्प परिणाम बताते हैं कि 1,00,000 अल्फा कणों में लगभग 1 को बहुत बड़े कोणों (90 डिग्री से अधिक) से विक्षेपित किया गया था, जबकि शेष थोड़ा विक्षेपण के साथ पारित हो गए थे। इससे, रदरफोर्ड ने निष्कर्ष निकाला कि अधिकांश द्रव्यमान इलेक्ट्रॉनों से घिरे एक मिनट, सकारात्मक रूप से आवेशित क्षेत्र (नाभिक) में केंद्रित था। जब एक (सकारात्मक) अल्फा कण नाभिक के काफी करीब पहुंच गया, तो इसे उच्च कोणों पर उछालने के लिए पर्याप्त मजबूती से पीछे हटा दिया गया। नाभिक के छोटे आकार ने अल्फ़ा कणों की छोटी संख्या को समझाया जो इस तरह से खदेड़ दिए गए थे। रदरफोर्ड ने नीचे उल्लिखित विधि का उपयोग करते हुए दिखाया कि नाभिक का आकार लगभग से कम था 10−14 m (इस आकार से कितना छोटा है, रदरफोर्ड अकेले इस प्रयोग से नहीं बता सकते; सबसे कम संभव आकार की इस समस्या के बारे में अधिक नीचे देखें)। एक दृश्य उदाहरण के रूप में, चित्रा 1 क्लाउड कक्ष के गैस में एक नाभिक द्वारा अल्फा कण के विक्षेपण को दर्शाता है।

रदरफोर्ड बैकस्कैटरिंग नामक एक विश्लेषणात्मक तकनीक में सामग्री विज्ञान समुदाय द्वारा अब रदरफोर्ड स्कैटरिंग का शोषण किया जाता है।

व्युत्पत्ति

एक केंद्रीय क्षमता के माध्यम से परस्पर क्रिया करने वाले दो आवेशित बिंदु कणों के लिए अंतर क्रॉस सेक्शन को गति के समीकरणों से प्राप्त किया जा सकता है। सामान्य तौर पर, केंद्रीय बल के तहत परस्पर क्रिया करने वाली दो-पिंड समस्या का वर्णन करने वाले गति के समीकरणों को द्रव्यमान के केंद्र और एक दूसरे के सापेक्ष कणों की गति में विभाजित किया जा सकता है। उस स्थिति पर विचार करें जहां एक कण (लेबल 1), द्रव्यमान के साथ और चार्ज करें साथ प्राथमिक आवेश कुछ प्रारंभिक गति से बहुत दूर से आपतित होता है द्रव्यमान वाले दूसरे कण (लेबल 2) पर और चार्ज करें शुरू में आराम पर। रदरफोर्ड द्वारा किए गए प्रयोग के अनुसार, हल्के अल्फा कणों के भारी नाभिक से बिखरने के मामले में, कम द्रव्यमान, अनिवार्य रूप से अल्फा कण का द्रव्यमान और जिस नाभिक से यह बिखरता है, वह प्रयोगशाला फ्रेम में अनिवार्य रूप से स्थिर होता है।

समन्वय प्रणाली की उत्पत्ति के साथ, बिनेट समीकरण में प्रतिस्थापन लक्ष्य पर कण 1 के लिए (स्कैटरर, कण 2), के रूप में प्रक्षेपवक्र का समीकरण प्राप्त करता है

कहाँ u = 1/r और b प्रभाव पैरामीटर है।

उपरोक्त अंतर समीकरण का सामान्य समाधान है

और सीमा शर्त है

समीकरणों को हल करना u → 0 उन सीमा स्थितियों का उपयोग करना:

और इसका व्युत्पन्न du/ → −1/b उन सीमा स्थितियों का उपयोग करना

हम प्राप्त कर सकते हैं

विक्षेपण कोण पर Θ टक्कर के बाद :

फिर विक्षेपण कोण Θ के रूप में व्यक्त किया जा सकता है:

b देने के लिए हल किया जा सकता है

इस परिणाम से स्कैटरिंग क्रॉस सेक्शन खोजने के लिए इसकी परिभाषा पर विचार करें

कूलम्ब क्षमता और आने वाले कणों की प्रारंभिक गतिज ऊर्जा, प्रकीर्णन कोण को देखते हुए Θ विशिष्ट रूप से प्रभाव पैरामीटर द्वारा निर्धारित किया जाता है b. इसलिए, बीच के कोण में बिखरे हुए कणों की संख्या Θ और Θ + संबंधित प्रभाव पैरामीटर वाले कणों की संख्या के समान होना चाहिए b और b + db. एक घटना तीव्रता के लिए I, इसका तात्पर्य निम्नलिखित समानता से है

त्रिज्य सममित प्रकीर्णन विभव के लिए, जैसा कि कूलम्ब विभव के मामले में होता है, = 2π sin Θ , बिखरने वाले क्रॉस सेक्शन के लिए अभिव्यक्ति प्रदान करना

प्रभाव पैरामीटर के लिए पहले व्युत्पन्न अभिव्यक्ति में प्लगिंग b(Θ) हम रदरफोर्ड डिफरेंशियल स्कैटरिंग क्रॉस सेक्शन पाते हैं

इसी परिणाम को वैकल्पिक रूप से व्यक्त किया जा सकता है

कहाँ α1/137 आयामहीन सूक्ष्म संरचना स्थिरांक है, EK10 MeV में कण 1 की प्रारंभिक गैर-सापेक्ष गतिज ऊर्जा है, और ħc 197 MeV·fm.

अधिकतम परमाणु आकार की गणना का विवरण

अल्फा कणों और नाभिक (शून्य प्रभाव पैरामीटर के साथ) के बीच सीधे टकराव के लिए, अल्फा कण की सभी गतिज ऊर्जा को संभावित ऊर्जा में बदल दिया जाता है और कण आराम पर होता है। अल्फा कण के केंद्र से नाभिक के केंद्र की दूरी (rmin) इस बिंदु पर परमाणु त्रिज्या के लिए ऊपरी सीमा है, अगर यह प्रयोग से स्पष्ट है कि बिखरने की प्रक्रिया ऊपर दिए गए क्रॉस सेक्शन फॉर्मूला का पालन करती है।

अल्फा कण और नाभिक पर आवेशों के बीच व्युत्क्रम-वर्ग नियम को लागू करके, कोई लिख सकता है: अनुमान: 1. निकाय पर कोई बाह्य बल कार्य नहीं कर रहा है। इस प्रकार निकाय की कुल ऊर्जा (K.E.+P.E.) नियत रहती है। 2. प्रारंभ में अल्फा कण नाभिक से बहुत अधिक दूरी पर होते हैं।

पुनर्व्यवस्थित:

एक अल्फा कण के लिए:

  • m (द्रव्यमान) = 6.64424×10−27 kg = 3.7273×109 eV/c2
  • q1 (हीलियम के लिए) = 2 × 1.6×10−19 C = 3.2×10−19 C
  • q2 (सोने के लिए) = 79 × 1.6×10−19 C = 1.27×10−17 C
  • v (प्रारंभिक वेग) = 2×107 m/s (इस उदाहरण के लिए)

इन्हें में प्रतिस्थापित करने से लगभग का मान मिलता है 2.7×10−14 m, या 27 स्त्री. (सच्ची त्रिज्या लगभग 7.3 fm है।) इन प्रयोगों में नाभिक की वास्तविक त्रिज्या को पुनः प्राप्त नहीं किया गया है क्योंकि अल्फा में परमाणु केंद्र के 27 fm से अधिक में प्रवेश करने के लिए पर्याप्त ऊर्जा नहीं है, जैसा कि उल्लेख किया गया है, जब की वास्तविक त्रिज्या सोना 7.3 fm है। रदरफोर्ड ने इसे महसूस किया, और यह भी महसूस किया कि सोने पर अल्फ़ाज़ के वास्तविक प्रभाव से किसी भी बल-विचलन का कारण बनता है 1/r कूलम्ब विभव उसके प्रकीर्णन वक्र के रूप को उच्च प्रकीर्णन कोणों (न्यूनतम प्रभाव प्राचलों) पर एक अतिपरवलय से कुछ और में बदल देगा। यह नहीं देखा गया था, यह दर्शाता है कि सोने के नाभिक की सतह को छुआ नहीं गया था, इसलिए रदरफोर्ड को भी पता था कि सोने के नाभिक (या सोने और अल्फा त्रिज्या का योग) 27 fm से छोटा था।

== सापेक्षिक कणों और लक्ष्य हटना == के साथ स्थितियों का विस्तार

कम-ऊर्जा रदरफोर्ड-प्रकार के प्रकीर्णन का विस्तार सापेक्षतावादी ऊर्जाओं और कणों में होता है, जिनमें आंतरिक स्पिन होती है, इस लेख के दायरे से बाहर है। उदाहरण के लिए, प्रोटॉन से इलेक्ट्रॉन प्रकीर्णन को Mott प्रकीर्णन के रूप में वर्णित किया जाता है,[2] एक क्रॉस सेक्शन के साथ जो गैर-सापेक्षवादी इलेक्ट्रॉनों के लिए रदरफोर्ड सूत्र को कम करता है। यदि बीम या लक्ष्य कण का कोई आंतरिक ऊर्जा उत्तेजन नहीं होता है, तो इस प्रक्रिया को प्रत्यास्थ टक्कर प्रकीर्णन कहा जाता है, क्योंकि ऊर्जा और संवेग को किसी भी स्थिति में संरक्षित करना होता है। यदि टक्कर के कारण एक या दूसरे घटक उत्तेजित हो जाते हैं, या यदि बातचीत में नए कण बनते हैं, तो इस प्रक्रिया को अप्रत्यास्थ टक्कर प्रकीर्णन कहा जाता है।

टारगेट रिकॉइल को काफी आसानी से हैंडल किया जा सकता है। हम अभी भी ऊपर वर्णित स्थिति पर विचार करते हैं, कण 2 शुरू में प्रयोगशाला फ्रेम में आराम पर है। उपरोक्त परिणाम सभी बड़े पैमाने के फ्रेम के केंद्र में लागू होते हैं। लैब फ्रेम में, एक सबस्क्रिप्ट एल द्वारा निरूपित, एक सामान्य केंद्रीय क्षमता के लिए बिखरने वाला कोण है

कहाँ . के लिए , . भारी कण 1 के लिए, और अर्थात आपतित कण बहुत छोटे कोण से विक्षेपित होता है। लैब फ्रेम में कण 2 की अंतिम गतिज ऊर्जा, , है

F 0 और 1 के बीच है, और संतुष्ट करता है , इसका अर्थ है कि यदि हम कण द्रव्यमान को स्विच करते हैं तो यह वही होता है। के साथ आमने-सामने की टक्कर के लिए ऊर्जा अनुपात F पर अधिकतम हो जाता है और इस तरह . के लिए , . यह 1 के लिए अधिकतम होता है , जिसका अर्थ है कि समान द्रव्यमान वाले आमने-सामने की टक्कर में, कण 1 की समस्त ऊर्जा कण 2 में स्थानांतरित हो जाती है। , या एक भारी घटना कण, और शून्य के करीब पहुंच जाता है, जिसका अर्थ है कि आपतित कण अपनी लगभग सभी गतिज ऊर्जा को बनाए रखता है। किसी भी केंद्रीय क्षमता के लिए, लैब फ्रेम में अंतर क्रॉस-सेक्शन उस से संबंधित है जो सेंटर-ऑफ-मास फ्रेम में है

प्रतिक्षेप के महत्व की भावना देने के लिए, हम एक घटना अल्फा कण (द्रव्यमान संख्या) के लिए सिर पर ऊर्जा अनुपात F का मूल्यांकन करते हैं ) सोने के नाभिक का बिखरना (द्रव्यमान संख्या ): . अल्फा पर सोने की घटना के विपरीत मामले में, एफ का वही मूल्य है, जैसा कि ऊपर बताया गया है। एक प्रोटॉन से इलेक्ट्रॉन के बिखरने के अधिक चरम मामले के लिए, और .

यह भी देखें

संदर्भ

  1. Rutherford, E. (1911). "LXXIX. The scattering of α and β particles by matter and the structure of the atom". The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 21 (125): 669–688. doi:10.1080/14786440508637080. ISSN 1941-5982.
  2. "Hyperphysics link".


पाठ्यपुस्तकें


बाहरी संबंध