ब्रांचिंग रैंडम वॉक
संभाव्यता सिद्धांत में, ब्रांचिंग रैंडम वॉक ऐसी स्टोकेस्टिक प्रक्रिया है जो रैंडम वॉक और ब्रांचिंग प्रक्रिया दोनों की अवधारणा को सामान्य बनाती है। प्रत्येक पीढ़ी (असतत समय) में, शाखाबद्ध रैंडम वॉक का मूल्य तत्वों का समूह है जो कुछ रैखिक स्थान में स्थित हैं, जैसे कि वास्तविक रेखा हैं। दी गई पीढ़ी के प्रत्येक तत्व की अगली पीढ़ी में कई वंशज हो सकते हैं। किसी भी वंश का स्थान उसके माता-पिता के स्थान और यादृच्छिक चर का योग है।
यह प्रक्रिया गैल्टन-वाटसन प्रक्रिया का स्थानिक विस्तार है। इसके निरंतर समतुल्य को ब्रांचिंग ब्राउनियन गति कहा जाता है।[1]
उदाहरण
ब्रांचिंग रैंडम वॉक का उदाहरण तैयार किया जा सकता है, जहां ब्रांचिंग प्रक्रिया प्रत्येक तत्व के लिए निश्चयही दो वंशज उत्पन्न करती है, बाइनरी ब्रांचिंग रैंडम वॉक प्रारंभिक स्थिति को देखते हुए कि Xϵ= 0, हम मानते हैं कि X1 और X2 Xϵ के दो बच्चे हैं, इसके अतिरिक्त, हम मानते हैं कि वे स्वतंत्र (संभाव्यता सिद्धांत) N(0, 1) यादृच्छिक चर हैं। परिणाम स्वरुप, पीढ़ी 2 में, यादृच्छिक चर X1,1 और X1,2 प्रत्येक X1 और N (0, 1) यादृच्छिक चर का योग है। अगली पीढ़ी में, यादृच्छिक चर X1,2,1 और X1,2,2 प्रत्येक X1,2 और N (0, 1) यादृच्छिक चर का योग है। वही निर्माण निरन्तर समय पर मूल्यों का उत्पादन करता है।
इस प्रक्रिया द्वारा निर्मित अनंत वंशावली वृक्ष में प्रत्येक वंश, जैसे कि अनुक्रम Xϵ, X1, X1,2, X1,2,2, ..., पारंपरिक रैंडम वॉक बनाता है।
यह भी देखें
- असतत-समय गतिशील प्रणाली
संदर्भ
- ↑ Shi, Zhan (2015). ब्रांचिंग रैंडम वॉक. École d’Été de Probabilités de Saint-Flour XLII – 2012 (in English). Vol. 2151. Paris: Springer. doi:10.1007/978-3-319-25372-5. ISBN 978-3-319-25371-8. ISSN 0075-8434.