हीलियम मंदक

From Vigyanwiki

helium dimer
Helium-dimer-2D-model.png
Names
Other names
dihelium
Identifiers
3D model (JSmol)
ChEBI
48
  • [1]: InChI=1S/He2/c1-2
    Key: GHVQTHCLRQIINU-UHFFFAOYSA-N
  • [He][He]
Properties
He2
Molar mass 8.0052 g/mol
Appearance colorless gas
Thermochemistry
1.1×10−5 kcal/mol
Related compounds
Related van der Waals molecules
LiHe NeHe2 He3
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N (what is checkY☒N ?)

हेलियम मंदक एक वैन डेर वाल्स अणु है जिसका सूत्र He2 है जिसमें दो हीलियम परमाणु होते हैं[2]यह रासायनिक तत्व सबसे बड़ा डायटोमिक अणु है, जो दो अणुओं के संयुक्त होने के कारण बनता है इस मंदक को एकत्रित रखने वाला बांध इतना कमजोर होता है कि यदि अणु घुमता है या बहुत अधिक हिलता है, तो यह टूट जाता है। यह केवल बहुत कम शीतयांत्रिक तापमान पर उपस्थित हो सकता है।

दो उत्तेजित हेलियम अणुओं को एक दूसरे के साथ भी बांधा जा सकता है, जिसे उत्तेजद्वयी के रूप में जाना जाता है। यह विज्ञानिक खोज 1912 में पहली बार देखे गए तारणों के साथ हेलियम के स्पेक्ट्रम से किया गया। He2 के रूप में लिखा जा सकता है, जिसका अर्थ है कि एक उत्तेजित अवस्था को दर्शाने वाला होता है, यह पहला ज्ञात रायडबर्ग अणु है। कई द्विहेलियम आयन भी उपस्थित होता हैं, जिनमें ऋणात्मक, धनात्मक एक और धनात्मक दो के शुद्ध आवेश होते हैं। दो हीलियम परमाणु बिना बॉन्डिंग के फुलरीन की एक खाली जाल में समायोजित किए जा सकते हैं।

आणविक कक्षीय सिद्धांत के आधार पर, He2 उपस्थित नहीं होना चाहिए, और परमाणुओं के मध्य एक रासायनिक बंधन नहीं बन सकता। यद्यपि, वैन डेर वाल्स बल हीलियम परमाणुओं के मध्य उपस्थित है, जैसा कि तरल हीलियम के अस्तित्व से दिखाया गया है, और परमाणुओं के मध्य की दूरी की एक निश्चित सीमा पर आकर्षण प्रतिकर्षण से अधिक होता है। तो वैन डेर वाल्स बल से बंधे दो हीलियम परमाणुओं से बना एक अणु उपस्थित हो सकता है।[3] इस अणु के अस्तित्व को 1930 के प्रारंभ में प्रस्तावित किया गया था।[4]

He2 अणु के बीच अणुओं के बड़े अंतराल होते हैं, जो लगभग 5200 पीएम होता है। यह एक द्विपरमाणु अणु के लिए सबसे बड़ा होता है जिसमें घूर्णकंपट्रानीय उत्तेजना नहीं होती है। बाँधने वाली ऊर्जा केवल लगभग 1.3 मिलीकेल्विन या 1.1×10−5 कैलोरी/मोल की होती है। यह बॉन्ड हाइड्रोजन अणु में सहसंयोजक बॉन्ड के सापेक्ष में 5000 गुना कमजोर होता है।

मंदक में हेलियम के दोनों अणुओं को एकल फोटन द्वारा आयनित किया जा सकता है, जिसकी ऊर्जा 63.86 इलेक्ट्रॉन वोल्ट होती है। इस द्विगुण आयनन के लिए प्रस्तावित तंत्र है कि फोटन एक अणु से एक इलेक्ट्रॉन निकालता है, और फिर वह इलेक्ट्रॉन दूसरे हेलियम अणु को मारता है और उसे भी आयनित करता है।[5] फिर मंदक दो हेलियम कैटाइयन आयनों के रूप में विस्फोटित होता है, क्योंकि ये दोनों आयन एक ही गति के साथ परस्पर आपस मे विपरीत दिशा में टकराते हैं,।[5]

1928 में जॉन क्लार्क स्लेटर द्वारा पहली बार वैन डेर वाल्स बलों से बंधे एक डायहेलियम अणु का प्रस्ताव दिया गया था।[6]


गठन

हेलियम मंदक उस समय छोटी मात्रा में बनता है जब हेलियम गैस एक नोजल के माध्यम से प्रसारित होता है और ठंडा होता है। केवल आइसोटोप 4He ही इस प्रकार के अणु का गठन कर सकता है; 4He3He और 3He3He उपस्थित नहीं होते हैं, क्योंकि उनके पास एक स्थिर बन्ध स्थिति नहीं होती है। गैस धारण के माध्यम से बनने वाले मंदक की मात्रा लगभग एक प्रतिशत की होती है।[5]


आणविक आयन

He2+ एक संबंधित आयन है जिसे आधा सहसंयोजक बांध द्वारा बांधा जाता है। इसे हेलियम विद्युतीय विस्फोट में बनाया जा सकता है। यह इलेक्ट्रॉन के साथ पुनर्मिलन करके इलेक्ट्रॉनिक रूप में उत्तेजित हेलियम मंदक अणु (He2(a3Σ+u) उत्सर्जक) बनाता है। इन दोनों अणु ों के बहुत कम आयामी दूरियों के साथ अधिक सामान्य आकार होता है। He2+ N2, Ar, Xe, O2 और CO2 के साथ प्रतिक्रिया करके कैशियों और नीत्रल हेलियम अणुओं का गठन करता है[7]हेलियम समर्पण मंदक He22+ अत्यंत विसंगतिपूर्ण होता है और जब इसका विविच्छेदन होता है, तो बहुत ऊर्जा मुक्त होती है, लगभग 835 किलोजूल प्रति मोल के आसपास। इस आयन की गतिशील स्थिरता को लाइनस पॉलिंग ने पूर्वानुमानित किया था। 33.2 कैलोकैल प्रति मोल का एनर्जी बैरियर तत्काल अपघटन को रोकता है। यह आयन हाइड्रोजन अणु के समान-इलेक्ट्रॉनिक है। He22+ एक द्विगुण पॉजिटिव आवेश वाला सबसे छोटा संभव अणु है। इसे मास स्पेक्ट्रोस्कोपी का उपयोग करके पता लगाया जा सकता है।[8][9]हेलियम नकारात्मक मंदक He2− अस्थायी होता है और यह 1984 में बे, कोग्गिओला और पीटरसन द्वारा हीलियम डाईकैशन He2+ को सीजियम वाष्प से गुजारकर खोजा गया था। इसके बाद, एच. एच. मिशेल्स ने सिद्ध किया कि इसका अस्तित्व होता है और यह निष्क्रिय रूप से आस्थित है। उन्होंने निष्कर्ष निकाला कि He2− का 4Πg अवस्था He2 के a2Σ+u अवस्था के मुकाबले बांधा हुआ है। He−[4P∘] आयन के लिए गणनात्मक इलेक्ट्रॉन सम्बंधितता 0.077 eV है। वहीं, गणनात्मक इलेक्ट्रॉन सम्बंधितता की गणना इलेक्ट्रॉन की ऊर्जा बदलाव के आधार पर की जाती है जब एक इलेक्ट्रॉन आयन के साथ जुड़ता है। He−[4P∘] आयन की गणनात्मक इलेक्ट्रॉन सम्बंधितता 0.233 eV है। He2− लंबे समय तक विकिरण के माध्यम से 5/2g तत्व के माध्यम से 10 μsec में विकिरण होता है।4Πg अवस्था में 1σ2g1σu2σg2πu विद्युतकीय विन्यास होती है, इसकी गणनात्मक इलेक्ट्रॉन सम्बंधितता E 0.18±0.03 eV है, और इसका जीवनकाल 135±15 μsec है; केवल v=0 ध्वनित स्थिति इस लंबे जीवित स्थिति के लिए उत्तरदायी है।[10]तरंगीय हीलियम एनियन भी तरल हीलियम में पाया जाता है जिसे 22 ईवी से अधिक ऊर्जा स्तर वाले इलेक्ट्रॉन्स द्वारा उत्तेजित किया गया है। यह पहले तरल He में प्रवेश द्वारा होता है, जिसमें 1.2 ईवी लिया जाता है, उसके बाद एक He एटम इलेक्ट्रॉन को 3P स्तर तक उत्तेजित किया जाता है, जो 19.8 ईवी लेता है। फिर इलेक्ट्रॉन एक और हीलियम एटम के साथ मिलकर उत्तेजित हीलियम एटम के साथ मिल सकता है और He2− बनाने के लिए He2− हीलियम एटमों को द्वारा खींचता है, इसलिए इसके चारों ओर एक खाली स्थान होता है। यह तरल हीलियम की सतह की ओर प्रवास करने की प्रवृत्ति रखता है।

उत्तेजद्वयी

एक साधारण हीलियम परमाणु में, दो इलेक्ट्रॉन 1s कक्ष में पाए जाते हैं।.यद्यपि, यदि पर्याप्त ऊर्जा जोड़ी जाए, तो एक इलेक्ट्रॉन को उच्च ऊर्जा स्तर पर उठाया जा सकता है। यह उच्च ऊर्जा वाला इलेक्ट्रॉन मुख्य इलेक्ट्रॉन बन सकता है, और जो इलेक्ट्रॉन 1s कक्ष में रहता है, वह एक कोर इलेक्ट्रॉन होता है। दो उत्तेजित हीलियम परमाणु एक सहसार्य बांध के साथ प्रतिक्रिया कर सकते हैं और एक अणु बना सकते हैं जिसे डीहीलियम कहा जाता है, जो एक माइक्रोसेकंड या इससे थोड़ा समय तक बना रहती है। एक घबराहटी हीलियम परमाणु 23S स्थिति में एक घंटे तक टिक सकते हैं और अल्कली धातु परमाणु की तरह प्रतिक्रिया कर सकते हैं।[11]

डीहीलियम की उपस्थिति के पहले संकेत 1900 में वी. ह्यूस ने हीलियम के उत्सर्जन में एक बैंड स्पेक्ट्रम का अवलोकन करते हुए देखे थे। यद्यपि, स्पेक्ट्रम की प्रकृति के बारे में कोई जानकारी प्रकाशित नहीं की गई थी। जर्मनी के ई. गोल्डस्टीन और लंदन के डब्ल्यू. ई. कर्टिस ने 1913 में स्पेक्ट्रम के विवरण प्रकाशित किए। कर्टिस को प्रथम विश्वयुद्ध में सैन्य सेवा के लिए बुलाया गया था, और स्पेक्ट्रम का अध्ययन अल्फ्रेड फाउलर ने जारी रखा। फाउलर ने मान्यता प्राप्त किया कि दो-सिर वाले बैंड दो श्रृंखलाओं में बंटते हैं, जो रेखीय स्पेक्ट्रम में मुख्य और विस्तारित श्रृंखलाओं के समान हैं।[12]उत्सर्जन बैंड स्पेक्ट्रम में कई बैंड होते हैं जो लाली की ओर गिरते हैं, यानी कि रेखाएं पतली होती हैं और स्पेक्ट्रम लंबी तारंगदैर्यों की ओर कमजोर होता है। केवल एक बैंड ही हरित रंग के एक बैंड हेड (5732 एंग्स्ट्रॉम) की ओर गिरता है। अन्य मजबूत बैंड हेड 6400, 4649, 4626, 4546, 4157.8, 3777, 3677, 3665, 3356.5 और 3348.5 एंग्स्ट्रॉम पर पाए जाते हैं। स्पेक्ट्रम में कुछ बैंड हेड रहित होते हैं और अतिरिक्त रेखाएं भी होती हैं। महीने बैंड हेड 5133 और 5108 एंग्स्ट्रॉम पर पाए जाते हैं।

यदि मानक वालेंस इलेक्ट्रॉन 2s, 3s या 3d कक्ष में होता है, तो एक 1Σu अवस्था प्राप्त होती है; यदि यह 2p, 3p या 4p में होता है, तो एक 1Σg अवस्था प्राप्त होती है। इसकी मूल अवस्था X1Σg+ होती है।[13]He2 की तीन सबसे निम्न त्रिपलेट अवस्थाएं निर्देशनों के साथ होती हैं: a3Σu, b3Πg और c3Σg। वाइब्रेशन के बिना (v=0) वाली a3Σu अवस्था का लंबा मेटास्थायी जीवनकाल 18 सेकंड होता है, जो अन्य अवस्थाओं या अचंभित गैस उत्तेजद्वयी के जीवनकाल से काफी लंबा होता है। यह स्पष्टीकरण है कि a3Σu अवस्था में कोई इलेक्ट्रॉन कक्षीय कणीय कुण्डलीय पथचालना नहीं होती है, क्योंकि हीलियम अवस्था के लिए सभी इलेक्ट्रॉन S कक्षों में होते हैं।[14]

He2 की निम्न सिंगलेट अवस्थाएं A1Σu, B1Πg और C1Σg होती हैं। उत्तेजद्वयी अणु वैन देर वाल्स बॉन्डेड हीलियम मंदक से काफी छोटे और अधिक कस्तूरीय बंधित होते हैं। A1Σu अवस्था के लिए बाइंडिंग ऊर्जा लगभग 2.5 ईवी होती है, जिसके संपर्क में आत्मक अलगाव 103.9 पीएम होता है।[15]C1Σg अवस्था की बाइंडिंग ऊर्जा 0.643 ईवी है और अणुओं के बीच का अलगाव 109.1 पीएम है। ये दो अवस्थाएं एक प्रतिकारी दूरी की सीमा रखती हैं जिसकी अधिकतम मान 300 पीएम के आस-पास होता है, जहां यदि उत्तेजित परमाणु नजदीक आते हैं, तो उन्हें एक ऊर्जा बाधा को पार करनी होती है। एक सिंगलेट अवस्था A1Σ+u बहुत अस्थायी होती है और उसका जीवनकाल केवल नैनोसेकंडों तक होता है।।[16]He2 उत्तेजद्वयी की स्पेक्ट्रम में बैंड होते हैं जो विभिन्न घूर्णन दरों और यात्रात्मक अवस्थाओं के बीच संक्रमणों के कारण विभिन्न इलेक्ट्रॉनिक संक्रमणों के साथ विभाजित बहुत सारे रेखाओं के कारण होते हैं। इन रेखाओं को पी, क्यू और आर ब्रांचों में वर्गीकृत किया जा सकता है। लेकिन सम्मिश्रण के कारण, समान संख्यावाले घूर्णन स्तरों में Q ब्रांच रेखाएं नहीं होती हैं, क्योंकि दोनों न्यूक्लियस 0 स्पिन होते हैं। अणु की कई इलेक्ट्रॉनिक अवस्थाएं अध्ययन की गई हैं, जिनमें शैली की संख्या 25 तक होती है।[17] हीलियम डिस्चार्ज लैंप हीलियम अणुओं से वैक्यूम पराबैंगनी विकिरण उत्पन्न करते हैं। जब उच्च ऊर्जा प्रोटॉन हीलियम गैस से टकराते हैं तो यह He के उत्तेजित अत्यधिक कंपन वाले अणुओं के क्षय द्वारा लगभग 600 Å पर यूवी उत्सर्जन भी पैदा करता है।2 एक में1एसu जमीनी स्थिति के लिए राज्य।[18]उत्साहित हीलियम अणुओं से यूवी विकिरण का उपयोग स्पंदित निर्वहन आयनीकरण डिटेक्टर में किया जाता है जो मिश्रित गैसों की सामग्री को प्रति अरब भागों के नीचे के स्तर पर पता लगाने में सक्षम है।[19]

हीलियम डिस्चार्ज लैंप हीलियम अणुओ से वैक्यूम अल्ट्रावायलेट विकिरण उत्पन्न करते हैं। जब उच्च ऊर्जा वाले प्रोटॉन्स हीलियम गैस को मारते हैं, तो यह A1Σu अवस्था में उत्तेजित होने वाले ऊच्च द्रवण वाले He2 के अणुओ के अवशेष द्वारा ग्राउंड स्थिति में यूवी प्रक्षेपण भी उत्पन्न करता है। उत्तेजित हीलियम अणुओ से यूवी विकिरण का उपयोग पल्स किए गए डिस्चार्ज आयनीकरण डिटेक्टर में किया जाता है जो विभिन्न गैसों की सामग्री को बिलियन पार्ट के नीचे स्तरों पर पहचानने की क्षमता रखता है।[18]

तरल हीलियम में, उत्तेजद्वयी एक सोल्वेशन बबल बनाता है। 3d अवस्था में, एक He*2 अणु के आस-पास एक बबल 12.7 Å त्रिज्या के रेडियस में होता है वायुमंडलीय दबाव पर। जब दबाव को 24 वायुमंडलिय दाबे तक बढ़ा दिया जाता है, तो बबल का रेडियस 10.8 Å तक संकुचित हो जाता है। यह बदलता बबल आकार फ्लोरेससेंस बैंडों में एक स्थानांतरण का कारण होता है।[20]

state K इलेक्ट्रॉनिक कोणीय गति Λ इलेक्ट्रॉनिक स्पिन एस हंड का कपलिंग केस प्रकार ऊर्जा पृथक्करण ऊर्जा eV लंबाई अपराह्न कंपन स्तर
A1Σu 1,3,5,7 एकल 2.5 103.9
B1Πg एकल
C1Σg 0,2,4,6 एकल
a3Σu 1,3,5,7 त्रिसमूही
b3Πg त्रिसमूही
c3Σg 0,2,4,6 0 1 b त्रिसमूही
5Σ+g पंचक


चुंबकीय संघनन

बहुत मजबूत चुंबकीय क्षेत्रों (लगभग 750,000 टेस्ला) और काफी कम तापमानों में, हीलियम परमाणु आकर्षित होते हैं और समस्तता तक एक रेखांकन बना सकते हैं। यह स्थिति सफेद ड्वार्फ और न्यूट्रॉन सितारों में हो सकती है।[38] बांध की लंबाई और पृथक्करण ऊर्जा दोनों चुंबकीय क्षेत्र बढ़ने के साथ बढ़ती हैं।[21]


प्रयोग

डायहीलियम उत्तेजद्वयी हीलियम डिस्चार्ज लैंप में महत्वपूर्ण घटक है। डायहीलियम आयन का दूसरा उपयोग न्यून तापमान प्लाज्मा का उपयोग करके आमवासीय आयनीकरण तकनीकों में होता है। इसमें हीलियम परमाणुओं को उत्तेजित किया जाता है, और फिर डायहीलियम आयन उत्पन्न होता है। He2+ निकलकर हवा में मौजूद N2 के साथ प्रतिक्रिया करता है और N2+ बनाता है। ये आयन संविप्रक्रिया के लिए सैंपल सतह के साथ प्रतिक्रिया करते हैं और इस्पेक्ट्रोस्कोपी में उपयोग होने वाले सकारात्मक आयन बनाते हैं। हीलियम मंदक को धातु नुकसान को कम करने के लिए तापमान 30 °C से भी कम हो सकता है।[22]

समूह

He2 के साथ वैन देर वाल्स यौगिक बनाने की साबित हो चुकी हैं, जिसमें अन्य परमाणुओं के साथ मिलकर 24MgHe2 और 40CaHe2 जैसे बड़े क्लस्टर बनाए जाते हैं।हिलियम-4 ट्राइमर (4He3), तीन हिलियम परमाणुओं का एक क्लस्टर, का पूर्वानुमानित रुप है जिसमें एक उत्तेजित स्थिति, जो एक एफिमोव स्थिति होती है, होती है। यह 2015 में प्रयोगशाला में प्रमाणित किया गया है।[23]


ढ़ाँचा

दो हीलियम परमाणु बड़े फुलरीन, जैसे कि C70 और C84, के भीतर फिट हो सकते हैं। इन्हें न्यूक्लियर मैग्नेटिक रिज़ोनेंस (NMR) के माध्यम से और मास स्पेक्ट्रोमेट्री के द्वारा पहचाना जा सकता है। हीलियम के NMR में एक छोटी स्थानांतरण होता है। C84 में समेटे हुए हीलियम में 20% He2@C84 हो सकता है, जबकि C78 में 10% और C76 में 8% हो सकता है।बड़ी गुफाएँ अधिक परमाणुओं को समेटने की संभावना बढ़ाती हैं। यद्यपि जब दो हीलियम परमाणुओं को एक छोटे ढ़ाँचे में निकटता से रखा जाता है, तो उनके बीच केमिकल बांध नहीं होती है।दो हीलियम परमाणुओं की C60 फुलरीन ढ़ाँचा में मौजूदगी केवल फुलरीन के प्रतिक्रियाशीलता पर थोड़ा सा प्रभाव होने की संभावना है। यह प्रभाव होता है क्योंकि ढ़ाँचे के अंतर्गतीय हीलियम परमाणुओं से इलेक्ट्रॉनों की उत्पीड़न होती है, जिससे उन्हें थोड़ा सकारात्मक आंशिक आवेश ऊर्जा मिलती है, जिससे He2δ+ उत्पन्न होते हैं, जो अविचारित हीलियम परमाणुओं से मजबूत बांध बनाते हैं। यद्यपि लोव्डिन परिभाषा के अनुसार बन्ध उपस्थित होता है।

C60 ढ़ाँचा के अंदर दो हीलियम परमाणु एक दूसरे से 1.979 अंग्स्ट्रॉम की दूरी पर स्थित होते हैं और हीलियम परमाणु से कार्बन ढ़ाँचा तक की दूरी 2.507 अंग्स्ट्रॉम होती है। चार्ज ट्रांसफर से प्रत्येक हीलियम परमाणु को 0.011 इलेक्ट्रॉन चार्ज इकाइयों की दान मिलती है। हीलियम-हीलियम युग्म के लिए कम से कम 10 आंतरगत संवेदनशीलता स्तर होने चाहिए।[24]


संदर्भ

  1. "Substance Name: Dihelium". Toxnet.
  2. Schöllkopf, W; Toennies, JP (25 November 1994). "छोटे वैन डेर वाल्स समूहों का गैर-विनाशकारी सामूहिक चयन". Science. 266 (5189): 1345–8. Bibcode:1994Sci...266.1345S. doi:10.1126/science.266.5189.1345. PMID 17772840. S2CID 23043700.
  3. Kolganova, Elena; Motovilov, Alexander; Sandhas, Werner (November 2004). "Scattering length of the helium-atom–helium-dimer collision". Physical Review A. 70 (5): 052711. arXiv:physics/0408019. Bibcode:2004PhRvA..70e2711K. doi:10.1103/PhysRevA.70.052711. S2CID 118311511.
  4. Glockler, Geo. (1937). "जटिल गठन". Transactions of the Faraday Society. 33: 224. doi:10.1039/TF9373300224. (subscription required)
  5. 5.0 5.1 5.2 Havermeier, T.; Jahnke, T.; Kreidi, K.; Wallauer, R.; Voss, S.; Schöffler, M.; Schössler, S.; Foucar, L.; Neumann, N.; Titze, J.; Sann, H.; Kühnel, M.; Voigtsberger, J.; Malakzadeh, A.; Sisourat, N.; Schöllkopf, W.; Schmidt-Böcking, H.; Grisenti, R. E.; Dörner, R. (April 2010). "हीलियम डिमर का सिंगल फोटॉन डबल आयोनाइजेशन". Physical Review Letters. 104 (15): 153401. arXiv:1006.2667. Bibcode:2010PhRvL.104o3401H. doi:10.1103/PhysRevLett.104.153401. PMID 20481987. S2CID 13319551.
  6. Slater, J. (September 1928). "हीलियम की सामान्य स्थिति". Physical Review. 32 (3): 349–360. Bibcode:1928PhRv...32..349S. doi:10.1103/PhysRev.32.349.
  7. Jahani, H.R.; Gylys, V.T.; Collins, C.B.; Pouvesle, J.M.; Stevefelt, J. (March 1988). "The importance of three-body processes to reaction kinetics at atmospheric pressures. III. Reactions of He/sub 2//sup +/ with selected atomic and molecular reactants". IEEE Journal of Quantum Electronics. 24 (3): 568–572. doi:10.1109/3.162.
  8. Guilhaus, Michael; Brenton, A. Gareth; Beynon, John H.; Rabrenović, Mila; von Ragué Schleyer, Paul (1985). "He22+, the experimental detection of a remarkable molecule". Journal of the Chemical Society, Chemical Communications (4): 210–211. doi:10.1039/C39850000210.
  9. Guilhaus, M.; Brenton, A. G.; Beynon, J. H.; Rabrenovic, M.; Schleyer, P. von Rague (14 September 1984). "First observation of He22+: charge stripping of He2+ using a double-focusing mass spectrometer". Journal of Physics B: Atomic and Molecular Physics. 17 (17): L605–L610. Bibcode:1984JPhB...17L.605G. doi:10.1088/0022-3700/17/17/010.
  10. Andersen, T. (1995). "भंडारण रिंग में निर्धारित नकारात्मक आयनों का जीवनकाल". Physica Scripta (in English). 1995 (T59): 230–235. Bibcode:1995PhST...59..230A. doi:10.1088/0031-8949/1995/T59/031. ISSN 1402-4896. S2CID 250868275.
  11. Vrinceanu, D.; Sadeghpour, H. (June 2002). "He(1 ^{1}S)–He(2 ^{3}S) collision and radiative transition at low temperatures". Physical Review A. 65 (6): 062712. Bibcode:2002PhRvA..65f2712V. doi:10.1103/PhysRevA.65.062712.
  12. Fowler, Alfred (1 March 1915). "हीलियम से संबद्ध बैंड स्पेक्ट्रम में एक नई प्रकार की श्रृंखला". Proceedings of the Royal Society of London. Series A. 91 (627): 208–216. Bibcode:1915RSPSA..91..208F. doi:10.1098/rspa.1915.0011. JSTOR 93423.
  13. Kristensen, Martin; Keiding, Søren R.; van der Zande, Wim J. (December 1989). "Lifetime determination of the long-lived B 1Πg state in He2* by photofragment spectroscopy". Chemical Physics Letters. 164 (6): 600–604. Bibcode:1989CPL...164..600K. doi:10.1016/0009-2614(89)85266-2.
  14. Raunhardt, Matthias (2009). मेटास्टेबल अवस्थाओं में परमाणुओं और अणुओं की उत्पत्ति और स्पेक्ट्रोस्कोपी (PDF) (Thesis). p. 84.
  15. Guberman, S.L.; Goddard, W.A. (15 June 1972). "On the origin of energy barriers in the excited states of He2". Chemical Physics Letters. 14 (4): 460–465. Bibcode:1972CPL....14..460G. doi:10.1016/0009-2614(72)80240-9.
  16. Carter, F.W.; Hertel, S.A.; Rooks, M.J.; McClintock, P.V.E.; McKinsey, D.N.; Prober, D.E. (4 May 2016). "Calorimetric observation of single He∗ 2 excimers in a 100 mK He bath". arXiv:1605.00694v1 [cond-mat.other].
  17. Panock, R.; Freeman, R.R.; Storz, R.H.; Miller, Terry A. (September 1980). "Observation of laser driven transitions to high rydberg states of He2". Chemical Physics Letters. 74 (2): 203–206. Bibcode:1980CPL....74..203P. doi:10.1016/0009-2614(80)85142-6.
  18. 18.0 18.1 Hill, Peter (November 1989). "हीलियम अणुओं की पराबैंगनी निरंतरता". Physical Review A. 40 (9): 5006–5016. Bibcode:1989PhRvA..40.5006H. doi:10.1103/PhysRevA.40.5006. PMID 9902760.
  19. Cai, Huamin; Stearns, Stanley D. (April 2013). "Pulsed discharge helium ionization detector with multiple combined bias/collecting electrodes for gas chromatography". Journal of Chromatography A. 1284: 163–173. doi:10.1016/j.chroma.2013.01.100. PMID 23484651.
  20. Bonifaci, Nelly; Li, Zhiling; Eloranta, Jussi; Fiedler, Steven L. (4 November 2016). "घने हीलियम के साथ हीलियम रिडबर्ग राज्य अणुओं की सहभागिता". The Journal of Physical Chemistry A. 120 (45): 9019–9027. Bibcode:2016JPCA..120.9019B. doi:10.1021/acs.jpca.6b08412. PMID 27783517.
  21. Lange, K. K.; Tellgren, E. I.; Hoffmann, M. R.; Helgaker, T. (19 July 2012). "मजबूत चुंबकीय क्षेत्रों में डायटॉमिक्स के लिए एक पैरामैग्नेटिक बॉन्डिंग मैकेनिज्म". Science. 337 (6092): 327–331. Bibcode:2012Sci...337..327L. doi:10.1126/science.1219703. PMID 22822146. S2CID 5431912.
  22. Seró, R.; Núñez, Ó.; Moyano, E. (2016). परिवेश आयनीकरण-उच्च-रिज़ॉल्यूशन मास स्पेक्ट्रोमेट्री. Comprehensive Analytical Chemistry. Vol. 71. pp. 51–88. doi:10.1016/bs.coac.2016.01.003. ISBN 9780444635723. ISSN 0166-526X.
  23. Kolganova, Elena A. (26 November 2010). "फैडीव दृष्टिकोण के ढांचे में हीलियम ट्रिमर" (PDF). Physics of Particles and Nuclei. 41 (7): 1108–1110. Bibcode:2010PPN....41.1108K. doi:10.1134/S1063779610070282. Retrieved 28 February 2015.
  24. Dolgonos, G. A.; Kryachko, E. S.; Nikolaienko, T. Yu (18 June 2018). "До питання Не–Не зв'язку у ендоедральному фулерені Не2@C60 (On the Problem of He–He Bond in the Endohedral Fullerene He2@C60)". Ukrainian Journal of Physics (in English). 63 (4): 288. doi:10.15407/ujpe63.4.288. ISSN 2071-0194.open access


बाहरी संबंध