सशर्त अपेक्षा
![]() | This article includes a list of general references, but it lacks sufficient corresponding inline citations. (September 2020) (Learn how and when to remove this template message) |
संभाव्यता सिद्धांत में, सशर्त अपेक्षा, सशर्त अपेक्षित मूल्य, या एक यादृच्छिक चर का सशर्त मतलब इसका अपेक्षित मूल्य है - बड़ी संख्या में होने वाली घटनाओं के कानून पर यह "औसतन" मान लेगा - यह देखते हुए कि शर्तों का एक निश्चित सेट है होने के लिए जाना जाता है। यदि यादृच्छिक चर केवल मूल्यों की एक सीमित संख्या में ले सकता है, तो "शर्तें" हैं कि चर केवल उन मानों का एक सबसेट ले सकता है। अधिक औपचारिक रूप से, उस मामले में जब यादृच्छिक चर को असतत संभाव्यता स्थान पर परिभाषित किया जाता है, तो शर्तें इस संभाव्यता स्थान के एक सेट का विभाजन होती हैं।
संदर्भ के आधार पर, सशर्त अपेक्षा या तो एक यादृच्छिक चर या एक कार्य हो सकती है। यादृच्छिक चर निरूपित किया जाता है सशर्त संभाव्यता के अनुरूप। फ़ंक्शन फॉर्म को या तो निरूपित किया जाता है या एक अलग फ़ंक्शन प्रतीक जैसे अर्थ के साथ प्रस्तुत किया गया है .
उदाहरण
उदाहरण 1: डाइस रोलिंग
मेले के रोल पर विचार करें die और मान लीजिए A = 1 यदि संख्या सम है (यानी, 2, 4, या 6) और A = 0 अन्यथा। इसके अलावा, मान लें कि B = 1 यदि संख्या अभाज्य है (अर्थात, 2, 3, या 5) और B = 0 अन्यथा।
1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|
A | 0 | 1 | 0 | 1 | 0 | 1 |
B | 0 | 1 | 1 | 0 | 1 | 0 |
ए की बिना शर्त उम्मीद है , लेकिन B = 1 पर सशर्त A की अपेक्षा (यानी, मरने वाले रोल पर सशर्त 2, 3, या 5) है , और B = 0 पर सशर्त A की अपेक्षा (यानी, डाई रोल पर सशर्त 1, 4, या 6 होने पर) है . इसी तरह, A = 1 पर सशर्त B की अपेक्षा है , और A = 0 पर सशर्त B की अपेक्षा है .
उदाहरण 2: वर्षा डेटा
मान लीजिए कि हमारे पास 1 जनवरी, 1990 से 31 दिसंबर, 1999 तक दस-वर्ष (3652-दिन) की अवधि के प्रत्येक दिन एक मौसम केंद्र द्वारा एकत्रित दैनिक वर्षा डेटा (प्रति दिन वर्षा का मिमी) है। एक अनिर्दिष्ट दिन उन 3652 दिनों के लिए वर्षा की मात्रा का औसत है। मार्च के महीने में एक अन्यथा अनिर्दिष्ट दिन के लिए वर्षा की सशर्त उम्मीद (सशर्त होने पर) दस साल की अवधि के सभी 310 दिनों में दैनिक वर्षा का औसत है जो मार्च में पड़ता है। और 2 मार्च के दिनों में वर्षा की सशर्त अपेक्षा उस विशिष्ट तिथि के साथ दस दिनों में हुई वर्षा की मात्रा का औसत है।
इतिहास
सशर्त संभाव्यता की संबंधित अवधारणा कम से कम पियरे-साइमन लाप्लास के समय की है, जिन्होंने सशर्त वितरण की गणना की। यह एंड्री निकोलाइविच कोलमोगोरोव थे, जिन्होंने 1933 में रेडॉन-निकोडायम प्रमेय का उपयोग करके इसे औपचारिक रूप दिया।[1] पॉल हेल्मोस के कार्यों में[2]और जोसेफ एल. डूब गया[3]1953 से, सिग्मा-बीजगणित|उप-σ-अल्जेब्रा का उपयोग करके इसकी आधुनिक परिभाषा के लिए सशर्त अपेक्षा को सामान्यीकृत किया गया था।[4]
परिभाषाएँ
एक घटना पर कंडीशनिंग
अगर A में एक घटना है अशून्य संभाव्यता के साथ, और X एक असतत यादृच्छिक चर, सशर्त अपेक्षा है का X दिया गया A है
जहां योग के सभी संभावित परिणामों पर लिया जाता है X.
ध्यान दें कि अगर , शून्य से विभाजन के कारण सशर्त अपेक्षा अपरिभाषित है।
असतत यादृच्छिक चर
अगर X और Y असतत यादृच्छिक चर हैं, की सशर्त अपेक्षा X दिया गया Y है
कहाँ का संयुक्त संभाव्यता द्रव्यमान फलन है X और Y. योग के सभी संभावित परिणामों पर लिया जाता है X.
ध्यान दें कि असतत यादृच्छिक चर पर कंडीशनिंग संबंधित घटना पर कंडीशनिंग के समान है:
- कहाँ A समुच्चय है .
निरंतर यादृच्छिक चर
होने देना और संयुक्त घनत्व के साथ निरंतर यादृच्छिक चर हो का घनत्व और सशर्त घनत्व का घटना दिया की सशर्त अपेक्षा दिया गया है
जब भाजक शून्य होता है, तो व्यंजक अपरिभाषित होता है।
ध्यान दें कि निरंतर यादृच्छिक चर पर कंडीशनिंग घटना पर कंडीशनिंग के समान नहीं है जैसा कि असतत मामले में था। चर्चा के लिए, सशर्त प्रायिकता # प्रायिकता शून्य की घटना पर कंडीशनिंग देखें। इस भेद का सम्मान नहीं करने से विरोधाभासी निष्कर्ष निकल सकते हैं जैसा कि बोरेल-कोल्मोगोरोव विरोधाभास द्वारा दिखाया गया है।
एल2 यादृच्छिक चर
इस खंड में सभी यादृच्छिक चरों को माना जाता है , जो वर्ग समाकलनीय है। इसकी पूर्ण सामान्यता में, इस धारणा के बिना सशर्त अपेक्षा विकसित की जाती है, सशर्त अपेक्षा के तहत नीचे देखें #उप-σ-बीजगणित के संबंध में सशर्त अपेक्षा|उप-σ-बीजगणित के संबंध में सशर्त अपेक्षा। h> सिद्धांत, हालांकि, अधिक सहज ज्ञान युक्त माना जाता है[5] और सशर्त अपेक्षा को स्वीकार करता है # प्रतिगमन के लिए कनेक्शन। के सन्दर्भ में यादृच्छिक चर, सशर्त अपेक्षा को प्रतिगमन विश्लेषण भी कहा जाता है।
किस प्रकार चलो एक संभावना स्थान हो, और में
मतलब के साथ और विचरण .
अपेक्षा माध्य चुकता त्रुटि को कम करता है:
- .
की सशर्त अपेक्षा X को एक ही संख्या के बजाय समान रूप से परिभाषित किया गया है
परिणाम एक समारोह होगा . होने देना एक यादृच्छिक वेक्टर बनें। सशर्त अपेक्षा एक मापने योग्य कार्य है जैसे कि
- .
ध्यान दें कि विपरीत , सशर्त अपेक्षा आम तौर पर अद्वितीय नहीं है: माध्य चुकता त्रुटि के कई मिनिमाइज़र हो सकते हैं।
अद्वितीयता
उदाहरण 1: उस मामले पर विचार करें जहां Y निरंतर यादृच्छिक चर है जो हमेशा 1 होता है। फिर फॉर्म के किसी भी फ़ंक्शन द्वारा माध्य चुकता त्रुटि को कम किया जाता है
उदाहरण 2: उस मामले पर विचार करें जहां Y द्वि-आयामी यादृच्छिक वेक्टर है . फिर स्पष्ट रूप से
लेकिन कार्यों के संदर्भ में इसे व्यक्त किया जा सकता है या या असीम रूप से कई अन्य तरीकों से। रेखीय प्रतिगमन के संदर्भ में, इस विशिष्टता की कमी को बहुसंरेखता कहा जाता है।
सशर्त अपेक्षा माप शून्य के एक सेट तक अद्वितीय है . उपयोग किया जाने वाला माप पुशफॉर्वर्ड उपाय है जो प्रेरित है Y.
पहले उदाहरण में, पुशवर्ड माप 1 पर एक डिराक वितरण है। दूसरे में यह विकर्ण पर केंद्रित है , ताकि कोई भी सेट जो इसे प्रतिच्छेद न करे, उसका माप 0 हो।
अस्तित्व
के लिए एक मिनिमाइज़र का अस्तित्व गैर तुच्छ है। यह दिखाया जा सकता है
हिल्बर्ट स्थान का एक बंद उपस्थान है .[6] हिल्बर्ट प्रक्षेपण प्रमेय द्वारा, के लिए आवश्यक और पर्याप्त स्थिति मिनिमाइज़र बनना सभी के लिए है में M अपने पास
- .
शब्दों में, यह समीकरण कहता है कि अवशिष्ट (सांख्यिकी) अंतरिक्ष के लिए ओर्थोगोनल है M के सभी कार्यों में से Y. यह ओर्थोगोनलिटी की स्थिति, संकेतक कार्यों पर लागू होती है , उस मामले के लिए सशर्त अपेक्षा का विस्तार करने के लिए नीचे उपयोग किया जाता है X और Y जरूरी नहीं हैं .
प्रतिगमन से संबंध
विश्लेषणात्मक रूप से इसकी गणना करने और प्रक्षेप के लिए कठिनाइयों के कारण सशर्त अपेक्षा अक्सर लागू गणित और सांख्यिकी में अनुमानित होती है।[7] हिल्बर्ट उप-स्थान
- के कार्यात्मक रूप को प्रतिबंधित करके ऊपर परिभाषित उपसमुच्चय के साथ प्रतिस्थापित किया गया है g, किसी मापनीय कार्य की अनुमति देने के बजाय। इसके उदाहरण हैं निर्णय वृक्ष सीखना व्हेन g को एक साधारण कार्य, रैखिक प्रतिगमन होना आवश्यक है जब g affine परिवर्तन, आदि होना आवश्यक है।
सशर्त अपेक्षा के ये सामान्यीकरण कई सशर्त अपेक्षाओं की कीमत पर आते हैं # मूल गुण अब धारण नहीं करते हैं। उदाहरण के लिए, चलो M के सभी रैखिक कार्यों का स्थान हो Y और जाने इस सामान्यीकृत सशर्त अपेक्षा को निरूपित करें/ प्रक्षेपण। अगर इसमें स्थिर कार्य, टावर संपत्ति शामिल नहीं है
धारण नहीं करेगा।
एक महत्वपूर्ण विशेष मामला है जब X और Y संयुक्त रूप से सामान्य रूप से वितरित होते हैं। इस मामले में यह दिखाया जा सकता है कि सशर्त अपेक्षा रैखिक प्रतिगमन के बराबर है:
गुणांक के लिए बहुभिन्नरूपी सामान्य वितरण#सशर्त वितरण में वर्णित।
=== उप-σ-बीजगणित === के संबंध में सशर्त अपेक्षा
![](https://upload.wikimedia.org/wikipedia/commons/thumb/7/74/LokaleMittelwertbildung.svg/langen-gb-450px-LokaleMittelwertbildung.svg.png)
निम्न पर विचार करें:
- संभावना स्थान है।
- एक यादृच्छिक चर है # परिमित अपेक्षा के साथ उस प्रायिकता स्थान पर परिभाषा।
- एक उप-सिग्मा-बीजगणित है|σ-बीजगणित का .
तब से एक उप है -बीजगणित का , कार्यक्रम आमतौर पर नहीं है -मापने योग्य, इस प्रकार रूप के अभिन्न अंग का अस्तित्व , कहाँ और का प्रतिबंध है को , सामान्य तौर पर नहीं कहा जा सकता। हालांकि, स्थानीय औसत में वसूल किया जा सकता है सशर्त अपेक्षा की मदद से।
X की एक सशर्त अपेक्षा दी गई , इस रूप में घोषित किया गया , क्या किसी -मापने योग्य समारोह जो संतुष्ट करता है:
प्रत्येक के लिए .[8]
जैसा कि में नोट किया गया है चर्चा, यह स्थिति यह कहने के बराबर है कि अवशिष्ट (सांख्यिकी) सूचक कार्यों के लिए ओर्थोगोनल है :
अस्तित्व
का अस्तित्व इसे नोट करके स्थापित किया जा सकता है के लिए पर एक परिमित उपाय है यह संबंध में पूर्ण निरंतरता है . अगर से प्राकृतिक इंजेक्शन है को , तब का प्रतिबंध है को और का प्रतिबंध है को . आगे, के संबंध में बिल्कुल निरंतर है , क्योंकि शर्त
तात्पर्य
इस प्रकार, हमारे पास है
जहां डेरिवेटिव रेडॉन-निकोडिम प्रमेय हैं | रेडॉन-निकोडीम उपायों के डेरिवेटिव।
एक यादृच्छिक चर के संबंध में सशर्त अपेक्षा
उपरोक्त के अलावा, विचार करें
- एक मापने योग्य स्थान , और
- एक यादृच्छिक चर .
की सशर्त अपेक्षा X दिया गया Y को उपरोक्त निर्माण को Σ-algebra#σ-algebra पर यादृच्छिक चर या वेक्टर द्वारा उत्पन्न करके परिभाषित किया गया है। σ-बीजगणित द्वारा उत्पन्न Y:
- .
डूब-डिंकिन लेम्मा द्वारा, एक कार्य मौजूद है ऐसा है कि
- .
चर्चा
- यह कोई रचनात्मक परिभाषा नहीं है; हमें केवल आवश्यक संपत्ति दी जाती है जो एक सशर्त अपेक्षा को पूरा करना चाहिए।
- की परिभाषा के समान हो सकता है एक घटना के लिए लेकिन ये बहुत अलग वस्तुएं हैं। पूर्व एक है -मापने योग्य समारोह , जबकि बाद वाला एक तत्व है और के लिए .
- विशिष्टता को लगभग निश्चित रूप से दिखाया जा सकता है: अर्थात, समान सशर्त अपेक्षा के संस्करण केवल एक शून्य सेट पर भिन्न होंगे।
- σ-बीजगणित कंडीशनिंग की ग्रैन्युलैरिटी को नियंत्रित करता है। एक सशर्त अपेक्षा एक महीन (बड़ा) σ-बीजगणित पर घटनाओं के एक बड़े वर्ग की संभावनाओं के बारे में जानकारी रखता है। अधिक घटनाओं पर मोटे (छोटे) σ-बीजगणित औसत पर एक सशर्त अपेक्षा।
सशर्त संभावना
एक बोरेल सबसेट के लिए B में , कोई यादृच्छिक चर के संग्रह पर विचार कर सकता है
- .
यह दिखाया जा सकता है कि वे एक मार्कोव कर्नेल बनाते हैं, जो कि लगभग सभी के लिए है , संभाव्यता माप है।[9] अचेतन सांख्यिकीविद का कानून तब है
- .
इससे पता चलता है कि सशर्त अपेक्षाएं, उनके बिना शर्त समकक्षों की तरह, एकीकरण, एक सशर्त उपाय के खिलाफ।
सामान्य परिभाषा
पूर्ण सामान्यता में, विचार करें:
- एक संभाव्यता स्थान .
- एक बनच स्थान .
- एक बोचनर अभिन्न यादृच्छिक चर .
- एक उप-σ-बीजगणित .
की सशर्त अपेक्षा दिया गया एक तक है -nullset अद्वितीय और पूर्णांक -मूल्यवान - मापने योग्य यादृच्छिक चर संतुष्टि देने वाला
सभी के लिए .[10][11] इस सेटिंग में सशर्त अपेक्षा को कभी-कभी ऑपरेटर नोटेशन में भी दर्शाया जाता है .
मूल गुण
निम्नलिखित सभी सूत्रों को लगभग निश्चित अर्थों में समझना है। σ-बीजगणित एक यादृच्छिक चर द्वारा प्रतिस्थापित किया जा सकता है , अर्थात। .
- स्वतंत्र कारकों को बाहर निकालना:
- अगर का स्वतंत्रता (संभाव्यता सिद्धांत) है , तब .
होने देना . तब से स्वतंत्र है , तो हमें वह मिलता है
इस प्रकार सशर्त अपेक्षा की परिभाषा निरंतर यादृच्छिक चर से संतुष्ट होती है , जैसी इच्छा थी।
- अगर से स्वतंत्र है , तब . ध्यान दें कि यह जरूरी नहीं है कि अगर से ही स्वतंत्र है और का .
- अगर स्वतंत्र हैं, स्वतंत्र हैं, से स्वतंत्र है और से स्वतंत्र है , तब .
- स्थिरता:
- अगर है -मापने योग्य, फिर .
प्रत्येक के लिए अपने पास , या समकक्ष
चूंकि यह प्रत्येक के लिए सत्य है , और दोनों और हैं -मापने योग्य (पूर्व संपत्ति परिभाषा के अनुसार है; बाद की संपत्ति यहां महत्वपूर्ण है), इससे कोई दिखा सकता है
और इसका तात्पर्य है लगभग हर जगह।
- विशेष रूप से, उप-σ-बीजगणित के लिए अपने पास .
- यदि Z एक यादृच्छिक चर है, तो . अपने सरलतम रूप में, यह कहते हैं .
- ज्ञात कारकों को बाहर निकालना:
- अगर है -मापने योग्य, फिर .
यहां सभी यादृच्छिक चर सामान्यता के नुकसान के बिना गैर-नकारात्मक मान लिए गए हैं। सामान्य मामले का इलाज किया जा सकता है .
हल करना और जाने . फिर किसी के लिए
इस तरह लगभग हर जगह।
कोई भी सरल फलन सूचक फलनों का परिमित रेखीय संयोजन होता है। रैखिकता से उपरोक्त संपत्ति सरल कार्यों के लिए होती है: यदि तब एक साधारण कार्य है .
अब चलो होना -मापने योग्य। फिर सरल कार्यों का एक क्रम मौजूद होता है मोनोटोनिक रूप से अभिसरण करना (यहाँ अर्थ है ) और बिंदुवार . नतीजतन, के लिए , क्रम मोनोटोनिक रूप से और पॉइंटवाइज़ में परिवर्तित हो जाता है .
इसके अलावा, चूंकि , क्रम मोनोटोनिक रूप से और पॉइंटवाइज़ में परिवर्तित हो जाता है सरल कार्यों के लिए सिद्ध विशेष मामले का संयोजन, सशर्त अपेक्षा की परिभाषा, और मोनोटोन अभिसरण प्रमेय को तैनात करना:
यह सभी के लिए है , कहाँ से लगभग हर जगह।
- यदि Z एक यादृच्छिक चर है, तो .
- कुल अपेक्षा का नियम: .[12]
- टॉवर संपत्ति:
- उप-σ-बीजगणित के लिए अपने पास .
- एक विशेष मामला कुल अपेक्षा का कानून पुनर्प्राप्त करता है: .
- एक विशेष मामला तब होता है जब Z एक होता है - मापने योग्य यादृच्छिक चर। तब और इस तरह .
- संदेह मेर्टिंगेल संपत्ति: ऊपर के साथ (जो है -मापने योग्य), और उपयोग भी , देता है .
- यादृच्छिक चर के लिए अपने पास .
- यादृच्छिक चर के लिए अपने पास .
- उप-σ-बीजगणित के लिए अपने पास .
- रैखिकता: हमारे पास है और के लिए .
- सकारात्मकता : अगर तब .
- एकरसता: यदि तब .
- मोनोटोन अभिसरण प्रमेय: यदि तब .
- प्रभुत्व अभिसरण प्रमेय: यदि और साथ , तब .
- फतौ की लेम्मा: अगर तब .
- जेन्सेन की असमानता: यदि एक उत्तल कार्य है, फिर .
- सशर्त विचरण: सशर्त अपेक्षा का उपयोग करके हम विचरण की परिभाषा के साथ सादृश्य द्वारा परिभाषित कर सकते हैं, औसत से औसत वर्ग विचलन, सशर्त विचरण
- परिभाषा:
- विचरण के लिए बीजगणितीय सूत्र:
- कुल विचरण का नियम: .
- मार्टिंगेल अभिसरण प्रमेय: एक यादृच्छिक चर के लिए , जिसकी परिमित अपेक्षा है, हमारे पास है , या तो उप-σ-बीजगणित की एक बढ़ती हुई श्रृंखला है और या अगर उप-σ-बीजगणित की एक घटती श्रृंखला है और .
- सशर्त अपेक्षा के रूप में -प्रोजेक्शन: अगर स्क्वायर-इंटीग्रेबल रियल रैंडम वेरिएबल्स के हिल्बर्ट अंतरिक्ष में हैं (परिमित दूसरे क्षण के साथ वास्तविक रैंडम वेरिएबल्स)।
- के लिए -मापने योग्य , अपने पास , यानी सशर्त अपेक्षा एलपी स्पेस के अर्थ में है | एल2(पी) स्केलर उत्पाद से ओर्थोगोनल प्रक्षेपण की रैखिक उपसमष्टि के लिए -मापने योग्य कार्य। (यह हिल्बर्ट प्रोजेक्शन प्रमेय के आधार पर सशर्त अपेक्षा के अस्तित्व को परिभाषित करने और साबित करने की अनुमति देता है।)
- मानचित्रण स्व-संयोजक है | स्व-संयोजक:
- कंडीशनिंग एलपी स्पेस का एक संकुचन (ऑपरेटर सिद्धांत) प्रक्षेपण है | एलपी </सुप> रिक्त स्थान . अर्थात।, किसी भी पी ≥ 1 के लिए।
- दूब की सशर्त स्वतंत्रता संपत्ति:[13] अगर सशर्त रूप से स्वतंत्र दिए गए हैं , तब (समान रूप से, ).
यह भी देखें
- कंडीशनिंग (संभावना)
- विघटन प्रमेय
- दूब-डाइनकिन लेम्मा
- गुणनखंड लेम्मा
- संयुक्त संभाव्यता वितरण
- गैर-विनिमेय सशर्त अपेक्षा
संभाव्यता कानून
- कुल संचयन का नियम (अन्य तीन का सामान्यीकरण करता है)
- कुल अपेक्षा का नियम
- कुल संभाव्यता का नियम
- कुल विचरण का नियम
टिप्पणियाँ
- ↑ Kolmogorov, Andrey (1933). Grundbegriffe der Wahrscheinlichkeitsrechnung (in Deutsch). Berlin: Julius Springer. p. 46.
- Translation: Kolmogorov, Andrey (1956). Foundations of the Theory of Probability (2nd ed.). New York: Chelsea. p. 53. ISBN 0-8284-0023-7. Archived from the original on 2018-09-14. Retrieved 2009-03-14.
- ↑ Oxtoby, J. C. (1953). "Review: Measure theory, by P. R. Halmos" (PDF). Bull. Amer. Math. Soc. 59 (1): 89–91. doi:10.1090/s0002-9904-1953-09662-8.
- ↑ J. L. Doob (1953). Stochastic Processes. John Wiley & Sons. ISBN 0-471-52369-0.
- ↑ Olav Kallenberg: Foundations of Modern Probability. 2. edition. Springer, New York 2002, ISBN 0-387-95313-2, p. 573.
- ↑ "संभाव्यता - सशर्त अपेक्षा के पीछे अंतर्ज्ञान". Mathematics Stack Exchange.
- ↑ Brockwell, Peter J. (1991). Time series : theory and methods (2nd ed.). New York: Springer-Verlag. ISBN 978-1-4419-0320-4.
- ↑ Hastie, Trevor. The elements of statistical learning : data mining, inference, and prediction (PDF) (Second, corrected 7th printing ed.). New York. ISBN 978-0-387-84858-7.
- ↑ Billingsley, Patrick (1995). "Section 34. Conditional Expectation". Probability and Measure (3rd ed.). John Wiley & Sons. p. 445. ISBN 0-471-00710-2.
- ↑ Klenke, Achim. Probability theory : a comprehensive course (Second ed.). London. ISBN 978-1-4471-5361-0.
- ↑ Da Prato, Giuseppe; Zabczyk, Jerzy (2014). अनंत आयामों में स्टोकेस्टिक समीकरण. Cambridge University Press. p. 26. doi:10.1017/CBO9781107295513. (Definition in separable Banach spaces)
- ↑ Hytönen, Tuomas; van Neerven, Jan; Veraar, Mark; Weis, Lutz (2016). Analysis in Banach Spaces, Volume I: Martingales and Littlewood-Paley Theory. Springer Cham. doi:10.1007/978-3-319-48520-1. (Definition in general Banach spaces)
- ↑ "सशर्त अपेक्षा". www.statlect.com. Retrieved 2020-09-11.
- ↑ Kallenberg, Olav (2001). आधुनिक संभाव्यता की नींव (2nd ed.). York, PA, USA: Springer. p. 110. ISBN 0-387-95313-2.
संदर्भ
- William Feller, An Introduction to Probability Theory and its Applications, vol 1, 1950, page 223
- Paul A. Meyer, Probability and Potentials, Blaisdell Publishing Co., 1966, page 28
- Grimmett, Geoffrey; Stirzaker, David (2001). Probability and Random Processes (3rd ed.). Oxford University Press. ISBN 0-19-857222-0., pages 67–69
बाहरी संबंध
- Ushakov, N.G. (2001) [1994], "Conditional mathematical expectation", Encyclopedia of Mathematics, EMS Press