कम्प्यूटेशनल समाजशास्त्र
Part of a series on |
Sociology |
---|
कम्प्यूटेशनल समाजशास्त्र समाजशास्त्र की एक शाखा है जो सामाजिक घटनाओं का विश्लेषण और मॉडल करने के लिए कम्प्यूटेशनल रूप से गहन तरीकों का उपयोग करता है। कंप्यूटरसतत तंत्र, आर्टिफिशियल इंटेलिजेंस , जटिल सांख्यिकीय विधियों, और सामाजिक नेटवर्क विश्लेषण जैसे विश्लेषणात्मक दृष्टिकोण का उपयोग करके, कम्प्यूटेशनल समाजशास्त्र सामाजिक अंतःक्रियाओं के बॉटम-अप मॉडलिंग के माध्यम से जटिल सामाजिक प्रक्रियाओं के सिद्धांतों का विकास और परीक्षण करता है।[1] इसमें सामाजिक एजेंटों की समझ, इन एजेंटों के बीच की बातचीत और सामाजिक समुच्चय पर इन इंटरैक्शन का प्रभाव शामिल है।[2] हालांकि सामाजिक विज्ञान में विषय वस्तु और पद्धतियां प्राकृतिक विज्ञान या कंप्यूटर विज्ञान से भिन्न हैं, समकालीन सामाजिकसतत तंत्र में उपयोग किए जाने वाले कई दृष्टिकोण भौतिक विज्ञान और कृत्रिम बुद्धि जैसे क्षेत्रों से उत्पन्न हुए हैं।[3][4] इस क्षेत्र में उत्पन्न होने वाले कुछ दृष्टिकोणों को प्राकृतिक विज्ञानों में आयात किया गया है, जैसे सामाजिक नेटवर्क विश्लेषण और नेटवर्क विज्ञान के क्षेत्रों से नेटवर्क केंद्रीयता के उपाय।
प्रासंगिक साहित्य में, कम्प्यूटेशनल समाजशास्त्र अक्सर सामाजिक जटिलता के अध्ययन से संबंधित होता है।[5] सामाजिक जटिलता अवधारणाएं जैसे कि जटिल प्रणालियां, स्थूल और सूक्ष्म प्रक्रिया के बीच गैर-रैखिक अंतर्संबंध, और उद्भव ने कम्प्यूटेशनल समाजशास्त्र की शब्दावली में प्रवेश कर चुकी हैं।[6] एक व्यावहारिक और प्रसिद्ध उदाहरण एक कृत्रिम समाज के रूप में एक कम्प्यूटेशनल मॉडल का निर्माण है, जिसके द्वारा शोधकर्ता सामाजिक व्यवस्था की संरचना का विश्लेषण कर सकते हैं।[2][7]
इतिहास
पृष्ठभूमि
पिछले चार दशकों में, कम्प्यूटेशनल समाजशास्त्र पेश किया गया है और लोकप्रियता प्राप्त कर रहा है[according to whom?]. इसका उपयोग मुख्य रूप से सामाजिक प्रक्रियाओं के मॉडलिंग या स्पष्टीकरण के निर्माण के लिए किया गया है और सरल गतिविधियों से जटिल व्यवहार के उद्भव पर निर्भर करता है।[8] उद्भव के पीछे विचार यह है कि किसी भी बड़ी प्रणाली के गुण हमेशा उन घटकों के गुण नहीं होते हैं जिनसे सिस्टम बना है।[9] अलेक्जेंडर, मॉर्गन और ब्रॉड, क्लासिकल इमर्जेंटिस्ट्स ने 20वीं सदी की शुरुआत में उभरने का विचार पेश किया। इस पद्धति का उद्देश्य दो अलग-अलग और चरम सत्तामीमांसाओं के बीच एक अच्छा पर्याप्त समायोजन खोजना था, जो न्यूनीकरणवादी भौतिकवाद और द्वैतवाद थे।[8]
जबकि कम्प्यूटेशनल सोशियोलॉजी की नींव के साथ उद्भव की एक मूल्यवान और महत्वपूर्ण भूमिका रही है, ऐसे लोग हैं जो आवश्यक रूप से सहमत नहीं हैं। क्षेत्र में एक प्रमुख नेता, एपस्टीन ने उपयोग पर संदेह किया क्योंकि ऐसे पहलू थे जो अस्पष्ट हैं। एपस्टीन ने आकस्मिकतावाद के खिलाफ एक दावा किया, जिसमें उन्होंने कहा कि यह "पूरी व्याख्या का गठन करने वाले भागों की उत्पादक पर्याप्तता है"।[8]
कम्प्यूटेशनल समाजशास्त्र पर एजेंट-आधारित मॉडल का ऐतिहासिक प्रभाव पड़ा है। ये मॉडल पहली बार 1960 के आसपास आए थे, और संगठनों, शहरों आदि में नियंत्रण और प्रतिक्रिया प्रक्रियाओं का अनुकरण करने के लिए उपयोग किए गए थे। मॉडलिंग व्यवहार की आखिरी लहर 1980 के दशक में आई थी। इस समय, मॉडल अभी भी नीचे-ऊपर थे; फर्क सिर्फ इतना है कि एजेंट अन्योन्याश्रित रूप से संपर्क करते हैं।[8]
सिस्टम सिद्धांत और संरचनात्मक कार्यात्मकता
युद्ध के बाद के युग में, वन्नेवर बुश के विभेदक विश्लेषक, जॉन वॉन न्यूमैन के वॉन न्यूमैन सेलुलर ऑटोमेटा, नॉर्बर्ट वीनर के साइबरनेटिक्स, और क्लाउड शैनन के सूचना सिद्धांत तकनीकी प्रणालियों में जटिलता को समझने और मॉडलिंग के लिए प्रभावशाली प्रतिमान बन गए। प्रतिक्रिया में, भौतिकी, जीव विज्ञान, इलेक्ट्रॉनिक्स और अर्थशास्त्र जैसे विषयों में वैज्ञानिकों ने प्रणालियों के एक सामान्य सिद्धांत को स्पष्ट करना शुरू किया जिसमें सभी प्राकृतिक और भौतिक घटनाएं एक प्रणाली में परस्पर संबंधित तत्वों की अभिव्यक्तियाँ हैं जिनमें सामान्य पैटर्न और गुण हैं। जटिल आधुनिक समाज का विश्लेषण करने के लिए एमिल दुर्खीम के आह्वान का अनुसरण करते हुए,[10] युद्ध के बाद के संरचनात्मक कार्यात्मक समाजशास्त्रियों जैसे टैल्कॉट पार्सन्स ने एजीआईएल प्रतिमान जैसे भव्य एकीकृत समाजशास्त्रीय सिद्धांतों को उत्पन्न करने का प्रयास करने के लिए घटक घटकों के बीच व्यवस्थित और पदानुक्रमित बातचीत के इन सिद्धांतों पर कब्जा कर लिया।[11] जॉर्ज होम्स जैसे समाजशास्त्रियों ने तर्क दिया कि समाजशास्त्रीय सिद्धांतों को प्रस्तावों की पदानुक्रमित संरचनाओं और सटीक शब्दावली में औपचारिक रूप दिया जाना चाहिए जिससे अन्य प्रस्तावों और परिकल्पनाओं को प्राप्त किया जा सके और अनुभवजन्य अध्ययनों में संचालित किया जा सके।[12] क्योंकि कंप्यूटर एल्गोरिदम और प्रोग्राम का उपयोग 1956 की शुरुआत में गणितीय प्रमेयों का परीक्षण और सत्यापन करने के लिए किया गया था, जैसे कि चार रंग प्रमेय,[13] कुछ विद्वानों ने अनुमान लगाया कि समान कम्प्यूटेशनल दृष्टिकोण समान रूप से औपचारिक समस्याओं और सामाजिक संरचनाओं और गतिकी के प्रमेयों को हल और सिद्ध कर सकते हैं।
मैक्रोसिमुलेशन और माइक्रोसिमुलेशन
1960 के दशक के अंत और 1970 के दशक के प्रारंभ तक, सामाजिक वैज्ञानिकों ने संगठनों, उद्योगों, शहरों और वैश्विक आबादी में नियंत्रण और प्रतिक्रिया प्रक्रियाओं के मैक्रो-सिमुलेशन करने के लिए तेजी से उपलब्ध कंप्यूटिंग तकनीक का उपयोग किया। इन मॉडलों ने सूची नियंत्रण, शहरी यातायात, प्रवासन और रोग संचरण जैसे अन्य व्यवस्थित कारकों के समग्र कार्यों के रूप में जनसंख्या वितरण की भविष्यवाणी करने के लिए विभेदक समीकरणों का उपयोग किया।[14][15] हालाँकि, 1970 के दशक के मध्य में रोम के क्लब द्वारा प्रकाशित रिपोर्टों के बाद सामाजिक प्रणालियों केसतत तंत्र पर पर्याप्त ध्यान दिया गया था, जिसमें भविष्यवाणी की गई थी कि घातीय आर्थिक विकास को बढ़ावा देने वाली नीतियां अंततः वैश्विक पर्यावरणीय तबाही लाएंगी,[16] असुविधाजनक निष्कर्षों ने कई लेखकों को मॉडल को बदनाम करने की कोशिश करने के लिए प्रेरित किया, शोधकर्ताओं को खुद को अवैज्ञानिक दिखाने का प्रयास किया।[2][17] उसी भाग्य से बचने की उम्मीद करते हुए, कई सामाजिक वैज्ञानिकों ने अपना ध्यान जनसंख्या स्तर पर वितरण में परिवर्तन के बजाय व्यक्तिगत स्तर की संस्थाओं की स्थिति में समग्र परिवर्तन के मॉडलिंग द्वारा पूर्वानुमान लगाने और नीतिगत प्रभावों का अध्ययन करने के लिए माइक्रो-सिमुलेशन मॉडल की ओर अपना ध्यान केंद्रित किया।[18] हालांकि, ये माइक्रो-सिमुलेशन मॉडल व्यक्तियों को बातचीत या अनुकूलन करने की अनुमति नहीं देते थे और बुनियादी सैद्धांतिक अनुसंधान के लिए अभिप्रेत नहीं थे।[1]
सेलुलर ऑटोमेटा और एजेंट-आधारित मॉडलिंग
1970 और 1980 का दशक भी एक ऐसा समय था जब भौतिक विज्ञानी और गणितज्ञ मॉडल बनाने और विश्लेषण करने का प्रयास कर रहे थे कि परमाणु जैसे सरल घटक इकाइयां वैश्विक गुणों को कैसे जन्म देती हैं, जैसे कम तापमान पर जटिल भौतिक गुण, चुंबकीय सामग्री में और अशांत प्रवाह के भीतर .[19] सेलुलर ऑटोमेटा का उपयोग करते हुए, वैज्ञानिक कोशिकाओं के एक ग्रिड वाली प्रणालियों को निर्दिष्ट करने में सक्षम थे जिसमें प्रत्येक कोशिका केवल कुछ परिमित अवस्थाओं पर कब्जा कर लेती थी और राज्यों के बीच परिवर्तन पूरी तरह से तत्काल पड़ोसियों के राज्यों द्वारा नियंत्रित होते थे। कृत्रिम बुद्धिमत्ता और माइक्रो कंप्यूटर शक्ति में प्रगति के साथ, इन विधियों ने अराजकता सिद्धांत और जटिल प्रणालियों के विकास में योगदान दिया, जो बदले में, अनुशासनात्मक सीमाओं के पार जटिल भौतिक और सामाजिक प्रणालियों को समझने में रुचि को नवीनीकृत किया।[2]जटिलता के अंतःविषय अध्ययन के लिए स्पष्ट रूप से समर्पित अनुसंधान संगठन भी इस युग में स्थापित किए गए थे: सांता फे संस्थान की स्थापना 1984 में लॉस अलामोस नेशनल लेबोरेटरी के वैज्ञानिकों द्वारा की गई थी और इसी तरह मिशिगन विश्वविद्यालय में BACH समूह की स्थापना 1980 के दशक के मध्य में हुई थी।
इस सेलुलर ऑटोमेटा प्रतिमान ने एजेंट-आधारित मॉडलिंग पर जोर देते हुए सामाजिकसतत तंत्र की तीसरी लहर को जन्म दिया। माइक्रो-सिमुलेशन की तरह, इन मॉडलों ने बॉटम-अप डिज़ाइन पर जोर दिया लेकिन चार प्रमुख धारणाओं को अपनाया जो माइक्रोसिमुलेशन से अलग हो गईं: स्वायत्तता, अन्योन्याश्रितता, सरल नियम और अनुकूली व्यवहार।[1]एजेंट-आधारित मॉडल भविष्य कहनेवाला सटीकता से कम चिंतित हैं और इसके बजाय सैद्धांतिक विकास पर जोर देते हैं।[20] 1981 में, गणितज्ञ और राजनीतिक वैज्ञानिक रॉबर्ट एक्सलरोड और विकासवादी जीवविज्ञानी डब्लू.डी. हैमिल्टन ने विज्ञान (जर्नल) में द एवोल्यूशन ऑफ कोऑपरेशन शीर्षक से एक प्रमुख पत्र प्रकाशित किया, जिसमें एक एजेंट-आधारित मॉडलिंग दृष्टिकोण का उपयोग किया गया था, यह प्रदर्शित करने के लिए कि पारस्परिकता पर आधारित सामाजिक सहयोग कैसे स्थापित और स्थिर किया जा सकता है। एक कैदी की दुविधा का खेल जब एजेंटों ने स्वार्थ के सरल नियमों का पालन किया।[21] एक्सलरॉड और हैमिल्टन ने प्रदर्शित किया कि व्यक्तिगत एजेंट (1) के एक सरल नियम सेट का पालन करते हुए पहली बारी में सहयोग करते हैं और (2) उसके बाद साथी की पिछली कार्रवाई को दोहराते हैं, जो विहित समाजशास्त्रीय निर्माणों की अनुपस्थिति में सहयोग और स्वीकृति के मानदंड विकसित करने में सक्षम थे। , जनसांख्यिकी, मूल्यों, धर्म और संस्कृति सहयोग की पूर्व शर्त या मध्यस्थ के रूप में।[4]1990 के दशक के दौरान, विलियम सिम्स बैनब्रिज, कैथलीन कार्ली, माइकल मैसी और जॉन स्कोवेर्त्ज़ जैसे विद्वानों ने सामान्यीकृत पारस्परिकता, पूर्वाग्रह, सामाजिक प्रभाव और संगठनात्मक सूचना प्रसंस्करण के बहु-एजेंट-आधारित मॉडल विकसित किए। 1999 में, निगेल गिल्बर्ट ने सोशलसतत तंत्र: सोशल साइंटिस्ट के लिएसतत तंत्र पर पहली पाठ्यपुस्तक प्रकाशित की और इसकी सबसे प्रासंगिक पत्रिका: जर्नल ऑफ आर्टिफिशियल सोसाइटीज एंड सोशलसतत तंत्र की स्थापना की।
डेटा खनन और सामाजिक नेटवर्क विश्लेषण
सामाजिक प्रणालियों के कम्प्यूटेशनल मॉडल में विकास से स्वतंत्र, सामाजिक नेटवर्क विश्लेषण 1970 और 1980 के दशक में ग्राफ सिद्धांत, सांख्यिकी, और सामाजिक संरचना के अध्ययन में एक विशिष्ट विश्लेषणात्मक पद्धति के रूप में सामने आया और इसे जेम्स सैमुअल कोलमैन जैसे समाजशास्त्रियों द्वारा व्यक्त और नियोजित किया गया था। एस. कोलमैन, हैरिसन व्हाइट, लिंटन फ्रीमैन, जे. क्लाइड मिशेल, मार्क ग्रानोवेट्टर, रोनाल्ड बर्ट और बैरी वेलमैन।[22] 1980 और 1990 के दशक में कंप्यूटिंग और दूरसंचार प्रौद्योगिकियों की बढ़ती व्यापकता ने विश्लेषणात्मक तकनीकों की मांग की, जैसे कि नेटवर्क सिद्धांत और बहुस्तरीय मॉडलिंग, जो तेजी से जटिल और बड़े डेटा सेट के पैमाने पर हो सकती है। कम्प्यूटेशनल समाजशास्त्र की सबसे हालिया लहर,सतत तंत्र को नियोजित करने के बजाय, व्यवहार संबंधी डेटा के लिए इलेक्ट्रॉनिक प्रॉक्सी के बड़े पैमाने पर कंप्यूटर डेटाबेस का विश्लेषण करने के लिए नेटवर्क विश्लेषण और उन्नत सांख्यिकीय तकनीकों का उपयोग करती है। इलेक्ट्रॉनिक रिकॉर्ड जैसे ईमेल और तत्काल संदेश रिकॉर्ड, वर्ल्ड वाइड वेब पर हाइपरलिंक, मोबाइल फोन का उपयोग, और यूज़नेट पर चर्चा, सामाजिक वैज्ञानिकों को समय पर कई बिंदुओं पर सामाजिक व्यवहार का सीधे निरीक्षण और विश्लेषण करने की अनुमति देता है और पारंपरिक बाधाओं के बिना विश्लेषण के कई स्तरों अनुभवजन्य तरीके जैसे साक्षात्कार, प्रतिभागी अवलोकन, या सर्वेक्षण उपकरण।[23] इसी तरह यंत्र अधिगम एल्गोरिदम में निरंतर सुधार ने सामाजिक वैज्ञानिकों और उद्यमियों को बड़े इलेक्ट्रॉनिक डेटासेट में सामाजिक संपर्क और विकास के अव्यक्त और सार्थक पैटर्न की पहचान करने के लिए नई तकनीकों का उपयोग करने की अनुमति दी है।[24][25]
शाब्दिक कॉर्पोरा के स्वत: विश्लेषण ने अभिनेताओं और उनके संबंधपरक नेटवर्क को बड़े पैमाने पर निकालने में सक्षम बनाया है,
पाठ्य डेटा को नेटवर्क डेटा में बदल दिया है। परिणामी नेटवर्क, जिसमें हजारों नोड हो सकते हैं, फिर प्रमुख अभिनेताओं, प्रमुख समुदायों या पार्टियों, और सामान्य गुणों जैसे समग्र नेटवर्क की मजबूती या संरचनात्मक स्थिरता, या कुछ की केंद्रीयता की पहचान करने के लिए नेटवर्क सिद्धांत से उपकरणों का उपयोग करके विश्लेषण किया जाता है। नोड्स।[27] यह मात्रात्मक वर्णनात्मक विश्लेषण द्वारा प्रस्तुत दृष्टिकोण को स्वचालित करता है,[28] जिससे विषय-क्रिया-वस्तु ट्रिपल की पहचान एक क्रिया से जुड़े अभिनेताओं के जोड़े या अभिनेता-वस्तु द्वारा गठित जोड़े के साथ की जाती है।[26]
कम्प्यूटेशनल सामग्री विश्लेषण
सामग्री विश्लेषण लंबे समय से सामाजिक विज्ञान और मीडिया अध्ययन का एक पारंपरिक हिस्सा रहा है। सामग्री विश्लेषण के स्वचालन ने उस क्षेत्र में एक बड़ी डेटा क्रांति की अनुमति दी है, जिसमें सोशल मीडिया और अखबार की सामग्री का अध्ययन किया गया है जिसमें लाखों समाचार आइटम शामिल हैं। लिंग पूर्वाग्रह, पठनीयता, सामग्री समानता, पाठक वरीयताएँ, और यहां तक कि मनोदशा का विश्लेषण लाखों दस्तावेजों पर पाठ खनन विधियों के आधार पर किया गया है।[29][30][31][32][33] पठनीयता, लैंगिक पूर्वाग्रह और विषय पूर्वाग्रह का विश्लेषण फ्लौनास एट अल में प्रदर्शित किया गया था।[34] दिखा रहा है कि विभिन्न विषयों में अलग-अलग लिंग पूर्वाग्रह और पठनीयता के स्तर कैसे होते हैं; twitter content का विश्लेषण करके एक बड़ी आबादी में मनोदशा बदलाव का पता लगाने की संभावना भी प्रदर्शित की गई थी।[35]
बड़ी मात्रा में ऐतिहासिक समाचार पत्र सामग्री का विश्लेषण दोजोगैंग एट अल द्वारा किया गया है।[36] जिसने दिखाया कि ऐतिहासिक समाचार पत्रों में आवधिक संरचनाओं को स्वचालित रूप से कैसे खोजा जा सकता है। इसी तरह का एक विश्लेषण सोशल मीडिया पर किया गया था, जो फिर से दृढ़ता से आवधिक संरचनाओं को प्रकट करता है।।[37]
चुनौतियां
कम्प्यूटेशनल समाजशास्त्र, अध्ययन के किसी भी क्षेत्र के साथ चुनौतियों का एक समूह का सामना करता है।[38] इन चुनौतियों को सार्थक रूप से संभालने की जरूरत है ताकि समाज पर अधिकतम प्रभाव डाला जा सके।
स्तर और उनकी बातचीत
प्रत्येक समाज जो बनता है वह एक स्तर या दूसरे स्तर पर होता है और इन स्तरों के बीच और उसके पार बातचीत की प्रवृत्ति मौजूद होती है। स्तरों को प्रकृति में केवल सूक्ष्म-स्तर या स्थूल-स्तर की आवश्यकता नहीं है। ऐसे मध्यवर्ती स्तर हो सकते हैं जिनमें एक समाज मौजूद है - समूह, नेटवर्क, समुदाय आदि।[38]
हालांकि सवाल यह उठता है कि इन स्तरों की पहचान कैसे की जाए और ये अस्तित्व में कैसे आए? और एक बार जब वे अस्तित्व में हैं तो वे अपने भीतर और अन्य स्तरों के साथ कैसे संपर्क करते हैं?
यदि हम संस्थाओं (एजेंटों) को नोड्स और उनके बीच के संपर्क को किनारों के रूप में देखते हैं, तो हम नेटवर्क के गठन को देखते हैं। इन नेटवर्कों में संपर्क संस्थाओं के बीच सिर्फ वस्तुनिष्ठ संबंधों के आधार पर नहीं आते हैं, बल्कि वे भाग लेने वाली संस्थाओं द्वारा चुने गए कारकों द्वारा तय किए जाते हैं।[39] इस प्रक्रिया के साथ चुनौती यह है कि, यह पहचानना मुश्किल है कि संस्थाओं का एक समूह नेटवर्क कब बनाएगा। ये नेटवर्क ट्रस्ट नेटवर्क, सहयोग नेटवर्क, निर्भरता नेटवर्क आदि के हो सकते हैं। ऐसे मामले सामने आए हैं जहां संस्थाओं के विषम समूह ने आपस में मजबूत और सार्थक नेटवर्क बनाने का प्रदर्शन किया है।[40][41]
जैसा कि पहले चर्चा की गई है, समाज स्तरों में आते हैं और ऐसे ही एक स्तर में व्यक्तिगत स्तर, एक माइक्रो-मैक्रो लिंक[42] उन अंतःक्रियाओं को संदर्भित करता है जो उच्च-स्तर बनाते हैं। इन माइक्रो-मैक्रो लिंक के संबंध में कुछ प्रश्नों का उत्तर दिया जाना आवश्यक है। वे कैसे बनते हैं? वे कब मिलते हैं? फीडबैक को निचले स्तरों पर क्यों धकेला जाता है और उन्हें कैसे धकेला जाता है?
इस श्रेणी में एक और बड़ी चुनौती सूचना और उनके स्रोतों की वैधता से संबंधित है। हाल के वर्षों में सूचना एकत्र करने और प्रसंस्करण में तेजी आई है हालाँकि, समाजों के बीच झूठी सूचनाओं के प्रसार पर थोड़ा ध्यान दिया गया, स्रोतों का पता लगाना और ऐसी जानकारी के स्वामित्व का पता लगाना कठिन है।
संस्कृति मॉडलिंग
समाज में नेटवर्क और स्तरों का विकास सांस्कृतिक विविधता लाता है।[43] एक विचार जो उत्पन्न होता है वह यह है कि, जब लोग अन्य संस्कृतियों और विश्वासों को अधिक स्वीकार करते हैं और बातचीत करते हैं, तो विविधता अभी भी कैसे बनी रहती है? कोई अभिसरण क्यों नहीं है? एक बड़ी चुनौती यह है कि इन विविधताओं को कैसे मॉडल किया जाए। क्या संचार मीडिया, समाजों के इलाके आदि जैसे बाहरी कारक हैं जो सांस्कृतिक विविधताओं के विकास या निरंतरता को प्रभावित करते हैं?[citation needed]
प्रयोग और मूल्यांकन
किसी भी अध्ययन या मॉडलिंग को जब प्रयोग के साथ जोड़ा जाता है तो पूछे जाने वाले प्रश्नों को संबोधित करने में सक्षम होना चाहिए। कम्प्यूटेशनल सामाजिक विज्ञान बड़े पैमाने पर डेटा से संबंधित है और जैसे-जैसे स्तर बढ़ता है, चुनौती और अधिक स्पष्ट हो जाती है। एक बड़े स्तर पर सूचनात्मक सतत तंत्र कैसे बनाएगा ? और यहां तक कि अगर बड़े पैमाने पर सतत तंत्र लाया जाता है, तो मूल्यांकन कैसे किया जाना चाहिए?
मॉडल पसंद और मॉडल जटिलता
एक और चुनौती उन मॉडलों की पहचान करना है जो डेटा और इन मॉडलों की जटिलताओं के लिए सबसे उपयुक्त हों। ये मॉडल हमें भविष्यवाणी करने में मदद करेंगे कि समय के साथ समाज कैसे विकसित हो सकते हैं और चीजें कैसे काम करती हैं, इस पर संभावित स्पष्टीकरण प्रदान करते हैं।[44]
उत्पादक मॉडल
उत्पादक मॉडल हमें नियंत्रित तरीके से व्यापक गुणात्मक विश्लेषण करने में मदद करते हैं। एपस्टीन द्वारा प्रस्तावित एक मॉडल एजेंट-आधारितसतत तंत्र है, जो विषम संस्थाओं (एजेंटों) के प्रारंभिक सेट की पहचान करने और सरल स्थानीय नियमों के आधार पर उनके विकास और विकास का निरीक्षण करने की बात करता है।
[45] लेकिन ये स्थानीय नियम क्या हैं? विषम संस्थाओं के एक सेट के लिए कोई उनकी पहचान कैसे करता है? इन नियमों का मूल्यांकन और प्रभाव कठिनाइयों का एक नया संग्रह बनाता है।
विषम या समवेत मॉडल
हाइब्रिड मॉडल बनाने के लिए सरल मॉडलों को एकीकृत करना जो व्यक्तिगत कार्यों पर बेहतर प्रदर्शन करते हैं, एक ऐसा दृष्टिकोण है जिस पर गौर किया जा सकता है।[46] ये मॉडल डेटा के बेहतर प्रदर्शन और समझ प्रस्तुत कर सकते हैं हालाँकि, इन सरल मॉडलों के बीच के संबंध की पहचान करने और उनकी गहरी समझ रखने का व्यापार बंद हो जाता है जब किसी को एक संयुक्त, अच्छा प्रदर्शन करने वाले मॉडल के साथ आने की आवश्यकता होती है। साथ ही इन हाइब्रिड मॉडलों के आधार पर डेटा का विश्लेषण और कल्पना करने में सहायता के लिए उपकरण और एप्लिकेशन के साथ आना एक और अतिरिक्त चुनौती है।
प्रभाव
कम्प्यूटेशनल समाजशास्त्र विज्ञान, प्रौद्योगिकी और समाज पर प्रभाव ला सकता है।[38]
विज्ञान पर प्रभाव
कम्प्यूटेशनल समाजशास्त्र के अध्ययन के प्रभावी होने के लिए मूल्यवान नवाचारों का होना आवश्यक है, ये नवाचार नए डेटा विश्लेषिकी उपकरण, बेहतर मॉडल और एल्गोरिदम के रूप में हो सकते हैं। इस तरह के नवाचार का आगमन बड़े स्तर पर वैज्ञानिक समुदाय के लिए एक आवेग होगा।[citation needed]
समाज पर प्रभाव
कम्प्यूटेशनल समाजशास्त्र की प्रमुख चुनौतियों में से एक सामाजिक प्रक्रियाओं का प्रतिरूपण है[citation needed] विभिन्न कानून और नीति निर्माता नए दिशानिर्देश जारी करने के लिए कुशल और प्रभावी रास्ते देखने में सक्षम होंगे और सामान्य रूप से जनता उनके सामने प्रस्तुत विकल्पों का मूल्यांकन करने और उचित समझ हासिल करने में सक्षम होगी और एक विवृत और संतुलित निर्णय प्रक्रिया को सक्षम करेगी।[citation needed].
यह भी देखें
- जर्नल ऑफ आर्टिफिशियल सोसाइटीज एजेंट-आधारित सामाजिक अनुकरण
- कृत्रिम समाज
- नकली वास्तविकता
- सामाजिक अनुकरण
- एजेंट-आधारित सामाजिकसतत तंत्र
- सामाजिक जटिलता
- कम्प्यूटेशनल अर्थशास्त्र
- कम्प्यूटेशनल महामारी विज्ञान
- क्लियोडायनामिक्स
- भविष्य बतानेवाला विश्लेषक
संदर्भ
- ↑ 1.0 1.1 1.2 Macy, Michael W.; Willer, Robert (2002). "From Factors to Actors: Computational Sociology and Agent-Based Modeling". Annual Review of Sociology. 28: 143–166. doi:10.1146/annurev.soc.28.110601.141117. JSTOR 3069238.
- ↑ 2.0 2.1 2.2 2.3 Gilbert, Nigel; Troitzsch, Klaus (2005). "Simulation and social science". सामाजिक वैज्ञानिकों के लिए सिमुलेशन (2 ed.). Open University Press.
- ↑ Epstein, Joshua M.; Axtell, Robert (1996). Growing Artificial Societies: Social Science from the Bottom Up. Washington DC: Brookings Institution Press. ISBN 978-0262050531.
- ↑ 4.0 4.1 Axelrod, Robert (1997). The Complexity of Cooperation: Agent-Based Models of Competition and Collaboration. Princeton, NJ: Princeton University Press. ISBN 0691015678.
- ↑ Casti, J (1999). "The Computer as Laboratory: Toward a Theory of Complex Adaptive Systems". Complexity. 4 (5): 12–14. doi:10.1002/(SICI)1099-0526(199905/06)4:5<12::AID-CPLX3>3.0.CO;2-4.
- ↑ Goldspink, C (2002). "Methodological Implications of Complex Systems Approaches to Sociality: Simulation as a Foundation for Knowledge". 5 (1). Journal of Artificial Societies and Social Simulation.
{{cite journal}}
: Cite journal requires|journal=
(help) - ↑ Epstein, Joshua (2007). Generative Social Science: Studies in Agent-Based Computational Modeling. Princeton, NJ: Princeton University Press.
- ↑ 8.0 8.1 8.2 8.3 Salgado, Mauricio, and Nigel Gilbert. "Emergence and communication in computational sociology." Journal for the Theory of Social Behaviour 43.1 (2013): 87-110.
- ↑ Macy, Michael W., and Robert Willer. "From factors to actors: computational sociology and agent-based modeling." Annual review of sociology 28.1 (2002): 143-166.
- ↑ Durkheim, Émile. समाज में श्रम का विभाजन. New York, NY: Macmillan.
- ↑ Bailey, Kenneth D. (2006). "Systems Theory". In Jonathan H. Turner (ed.). समाजशास्त्रीय सिद्धांत की पुस्तिका. New York, NY: Springer Science. pp. 379–404. ISBN 978-0-387-32458-6.
- ↑ Bainbridge, William Sims (2007). "कम्प्यूटेशनल समाजशास्त्र". In Ritzer, George (ed.). Blackwell Encyclopedia of Sociology. Blackwell Reference Online. doi:10.1111/b.9781405124331.2007.x. hdl:10138/224218. ISBN 978-1-4051-2433-1.
- ↑ Crevier, D. (1993). AI: The Tumultuous History of the Search for Artificial Intelligence. New York, NY: Basic Books. ISBN 9780465001040.
- ↑ Forrester, Jay (1971). विश्व गतिशीलता. Cambridge, MA: MIT Press.
- ↑ Ignall, Edward J.; Kolesar, Peter; Walker, Warren E. (1978). "Using Simulation to Develop and Validate Analytic Models: Some Case Studies". Operations Research. 26 (2): 237–253. doi:10.1287/opre.26.2.237.
- ↑ Meadows, DL; Behrens, WW; Meadows, DH; Naill, RF; Randers, J; Zahn, EK (1974). एक परिमित दुनिया में विकास की गतिशीलता. Cambridge, MA: MIT Press.
- ↑ "आपदा का कंप्यूटर दृश्य खंडित है". The New York Times. October 18, 1974.
- ↑ Orcutt, Guy H. (1990). "From engineering to microsimulation : An autobiographical reflection". Journal of Economic Behavior & Organization. 14 (1): 5–27. doi:10.1016/0167-2681(90)90038-F.
- ↑ Toffoli, Tommaso; Margolus, Norman (1987). Cellular automata machines: a new environment for modeling. Cambridge, MA: MIT Press. ISBN 9780262200608.
- ↑ Gilbert, Nigel (1997). "अकादमिक विज्ञान की संरचना का अनुकरण". Sociological Research Online. 2 (2): 1–15. doi:10.5153/sro.85. S2CID 5077349. Archived from the original on 1998-05-24. Retrieved 2009-12-16.
- ↑ Axelrod, Robert; Hamilton, William D. (March 27, 1981). "सहयोग का विकास". Science. 211 (4489): 1390–1396. Bibcode:1981Sci...211.1390A. doi:10.1126/science.7466396. PMID 7466396.
- ↑ Freeman, Linton C. (2004). The Development of Social Network Analysis: A Study in the Sociology of Science. Vancouver, BC: Empirical Press.
- ↑ Lazer, David; Pentland, Alex; Adamic, L; Aral, S; Barabasi, AL; Brewer, D; Christakis, N; Contractor, N; et al. (February 6, 2009). "Life in the network: the coming age of computational social science". Science. 323 (5915): 721–723. doi:10.1126/science.1167742. PMC 2745217. PMID 19197046.
- ↑ Srivastava, Jaideep; Cooley, Robert; Deshpande, Mukund; Tan, Pang-Ning (2000). "Web usage mining: discovery and applications of usage patterns from Web data". Proceedings of the ACM Conference on Knowledge Discovery and Data Mining. 1 (2): 12–23. doi:10.1145/846183.846188. S2CID 967595.
- ↑ Brin, Sergey; Page, Lawrence (April 1998). "बड़े पैमाने पर हाइपरटेक्स्टुअल वेब सर्च इंजन की शारीरिक रचना". Computer Networks and ISDN Systems. 30 (1–7): 107–117. CiteSeerX 10.1.1.115.5930. doi:10.1016/S0169-7552(98)00110-X.
- ↑ 26.0 26.1 S Sudhahar; GA Veltri; N Cristianini (2015). "बिग डेटा और नेटवर्क विश्लेषण का उपयोग करके अमेरिकी राष्ट्रपति चुनाव का स्वचालित विश्लेषण". Big Data & Society. 2 (1): 1–28. doi:10.1177/2053951715572916.
- ↑ S Sudhahar; G De Fazio; R Franzosi; N Cristianini (2013). "बड़े कॉर्पोरा में वर्णनात्मक सामग्री का नेटवर्क विश्लेषण" (PDF). Natural Language Engineering. 21 (1): 1–32. doi:10.1017/S1351324913000247. hdl:1983/dfb87140-42e2-486a-91d5-55f9007042df. S2CID 3385681.
- ↑ Franzosi, Roberto (2010). मात्रात्मक कथा विश्लेषण. Emory University.
- ↑ I. Flaounas; M. Turchi; O. Ali; N. Fyson; T. De Bie; N. Mosdell; J. Lewis; N. Cristianini (2010). "ईयू मीडियास्फीयर की संरचना" (PDF). PLOS ONE. 5 (12): e14243. Bibcode:2010PLoSO...514243F. doi:10.1371/journal.pone.0014243. PMC 2999531. PMID 21170383.
- ↑ V Lampos; N Cristianini (2012). "सामाजिक वेब से सांख्यिकीय शिक्षा के साथ घटनाओं का वर्तमान पता लगाना" (PDF). ACM Transactions on Intelligent Systems and Technology. 3 (4): 72. doi:10.1145/2337542.2337557. S2CID 8297993.
- ↑ I. Flaounas; O. Ali; M. Turchi; T Snowsill; F Nicart; T De Bie; N Cristianini (2011). NOAM: news outlets analysis and monitoring system (PDF). Proc. of the 2011 ACM SIGMOD international conference on Management of data. doi:10.1145/1989323.1989474.
- ↑ N Cristianini (2011). "Automatic Discovery of Patterns in Media Content". संयोजन पैटर्न मिलान. Lecture Notes in Computer Science. Vol. 6661. pp. 2–13. CiteSeerX 10.1.1.653.9525. doi:10.1007/978-3-642-21458-5_2. ISBN 978-3-642-21457-8.
- ↑ Lansdall-Welfare, Thomas; Sudhahar, Saatviga; Thompson, James; Lewis, Justin; Team, FindMyPast Newspaper; Cristianini, Nello (2017-01-09). "Content analysis of 150 years of British periodicals". Proceedings of the National Academy of Sciences (in English). 114 (4): E457–E465. Bibcode:2017PNAS..114E.457L. doi:10.1073/pnas.1606380114. ISSN 0027-8424. PMC 5278459. PMID 28069962.
- ↑ I. Flaounas; O. Ali; M. Turchi; T. Lansdall-Welfare; T. De Bie; N. Mosdell; J. Lewis; N. Cristianini (2012). "डिजिटल पत्रकारिता के युग में अनुसंधान के तरीके". Digital Journalism. 1: 102–116. doi:10.1080/21670811.2012.714928. S2CID 61080552.
- ↑ T Lansdall-Welfare; V Lampos; N Cristianini. ब्रिटेन में जनता के मूड पर मंदी के प्रभाव (PDF). Proceedings of the 21st International Conference on World Wide Web. Mining Social Network Dynamics (MSND) session on Social Media Applications. New York, NY, USA. pp. 1221–1226. doi:10.1145/2187980.2188264.
- ↑ Dzogang, Fabon; Lansdall-Welfare, Thomas; Team, FindMyPast Newspaper; Cristianini, Nello (2016-11-08). "ऐतिहासिक समाचारों में आवधिक पैटर्न की खोज". PLOS ONE. 11 (11): e0165736. Bibcode:2016PLoSO..1165736D. doi:10.1371/journal.pone.0165736. ISSN 1932-6203. PMC 5100883. PMID 27824911.
- ↑ Seasonal Fluctuations in Collective Mood Revealed by Wikipedia Searches and Twitter Posts F Dzogang, T Lansdall-Welfare, N Cristianini - 2016 IEEE International Conference on Data Mining, Workshop on Data Mining in Human Activity Analysis
- ↑ 38.0 38.1 38.2 Conte, Rosaria, et al. "Manifesto of computational social science Archived 2022-01-22 at the Wayback Machine." The European Physical Journal Special Topics 214.1 (2012): 325-346.
- ↑ Egu´ıluz, V. M.; Zimmermann, M. G.; Cela-Conde, C. J.; San Miguel, M. "अमेरिकन जर्नल ऑफ सोशियोलॉजी" (2005): 110, 977.
{{cite journal}}
: Cite journal requires|journal=
(help) - ↑ Sichman, J. S.; Conte, R. "कम्प्यूटेशनल और गणितीय संगठन सिद्धांत" (2002): 8(2).
{{cite journal}}
: Cite journal requires|journal=
(help) - ↑ Ehrhardt, G.; Marsili, M.; Vega-Redondo, F. "भौतिक समीक्षा ई" (2006): 74(3).
{{cite journal}}
: Cite journal requires|journal=
(help) - ↑ Billari, Francesco C. Agent-based computational modelling: applications in demography, social, economic and environmental sciences. Taylor & Francis, 2006.
- ↑ Centola, D.; Gonz´alez-Avella, J. C.; Egu´ıluz, V. M.; San Miguel, M. "संघर्ष संकल्प का जर्नल" (2007): 51.
{{cite journal}}
: Cite journal requires|journal=
(help) - ↑ Weisberg, Michael. When less is more: Tradeoffs and idealization in model building[dead link]. Diss. Stanford University, 2003.
- ↑ Epstein, Joshua M. Generative social science: Studies in agent-based computational modeling. Princeton University Press, 2006.
- ↑ Yuan, Yuan; Alabdulkareem, Ahmad; Pentland, Alex 'Sandy' (2018). "विषम एजेंटों के बीच सामाजिक नेटवर्क के गठन के लिए एक व्याख्यात्मक दृष्टिकोण". Nature Communications. 9 (1): 4704. Bibcode:2018NatCo...9.4704Y. doi:10.1038/s41467-018-07089-x. PMC 6224571. PMID 30410019.
बाहरी संबंध
- On-line book "Simulation for the Social Scientist" by Nigel Gilbert and Klaus G. Troitzsch, 1999, second edition 2005
- Journal of Artificial Societies and Social Simulation
- Agent based models for social networks, interactive java applets
- Sociology and Complexity Science Website
पत्रिकाओं और शैक्षणिक प्रकाशनों
- कॉम्प्लेक्सिटी रिसर्च जर्नल लिस्ट, UIUC, IL से
- संबंधित अनुसंधान समूह, UIUC, IL से
संघ, सम्मेलन और कार्यशालाएं
- कम्प्यूटेशनल सामाजिक और संगठन विज्ञान के लिए उत्तरी अमेरिकी संघ
- ईएसएसए: यूरोपियन सोशलसतत तंत्र एसोसिएशन
शैक्षणिक कार्यक्रम, विभाग और डिग्री
- यूनिवर्सिटी ऑफ ब्रिस्टल मीडियापैटर्न्स प्रोजेक्ट
- कार्नेगी मेलॉन यूनिवर्सिटी, PhD प्रोग्राम संगणना, संगठनों और समाज (COS) में
- शिकागो विश्वविद्यालय
- जॉर्ज मेसन यूनिवर्सिटी
- CSS (कम्प्यूटेशनल सोशल साइंसेज) में पीएचडी कार्यक्रम
- मास्टर ऑफ इंटरडिसिप्लिनरी स्टडीज, CSS जोर में एमए प्रोग्राम
- Portland State, सिस्टम साइंस में पीएचडी प्रोग्राम
- Portland State, सिस्टम साइंस में एमएस प्रोग्राम
- यूनिवर्सिटी कॉलेज डबलिन,
- कॉम्प्लेक्स सिस्टम और कम्प्यूटेशनल सोशल साइंस में पीएचडी कार्यक्रम
- सोशल डेटा एनालिटिक्स में एमएससी
- कम्प्यूटेशनल सोशल साइंस में बीएससी
- UCLA, माइनर इन ह्यूमन कॉम्प्लेक्स सिस्टम्स
- यूसीएलए, कम्प्यूटेशनल और सिस्टम बायोलॉजी में प्रमुख (व्यवहार विज्ञान सहित)
- विश्वविद्यालय। ऑफ मिशिगन, माइनर इन कॉम्प्लेक्स सिस्टम्स
- Systems Sciences Programs List, पोर्टलैंड राज्य अन्य विश्वव्यापी संबंधित कार्यक्रमों की सूची।
केंद्र और संस्थान
उत्तरी अमेरिका
- सेंटर फॉर कॉम्प्लेक्स नेटवर्क्स एंड सिस्टम्स रिसर्च, इंडियाना यूनिवर्सिटी, ब्लूमिंगटन, आईएन, यूएसए।
- सेंटर फॉर कॉम्प्लेक्स सिस्टम्स रिसर्च, अर्बाना-चैंपियन, आईएल, यूएसए में इलिनोइस विश्वविद्यालय।
- सेंटर फॉर सोशल कॉम्प्लेक्सिटी, जॉर्ज मेसन यूनिवर्सिटी, फेयरफैक्स, वीए, यूएसए।
- सामाजिक गतिशीलता और जटिलता केंद्र, एरिज़ोना स्टेट यूनिवर्सिटी, टेम्पे, AZ, यूएसए।
- सेंटर ऑफ द स्टडी ऑफ कॉम्प्लेक्स सिस्टम्स, यूनिवर्सिटी ऑफ मिशिगन, एन आर्बर, एमआई, यूएसए।
- ह्यूमन कॉम्प्लेक्स सिस्टम्स, कैलिफोर्निया विश्वविद्यालय लॉस एंजिल्स, लॉस एंजिल्स, सीए, यूएसए।
- इंस्टीट्यूट फॉर क्वांटिटेटिव सोशल साइंस, हार्वर्ड यूनिवर्सिटी, बोस्टन, एमए, यूएसए।
- नॉर्थवेस्टर्न इंस्टीट्यूट ऑन कॉम्प्लेक्स सिस्टम्स (एनआईसीओ), नॉर्थवेस्टर्न यूनिवर्सिटी, इवानस्टन, आईएल यूएसए।
- सांता फ़े संस्थान, सांता फ़े, एनएम, यूएसए।
- ड्यूक नेटवर्क विश्लेषण केंद्र, ड्यूक विश्वविद्यालय, डरहम, एनसी, यूएसए
दक्षिण अमेरिका
- Modelagem de Sistemas Complexos, साओ पाउलो विश्वविद्यालय - प्रत्येक, साओ पाउलो, एसपी, ब्राजील
- नेशनल इंस्टीट्यूट ऑफ साइंस एंड टेक्नोलॉजी ऑफ कॉम्प्लेक्स सिस्टम्स, ब्राजीलियन सेंटर फॉर फिजिक्स रिसर्च, रियो डी जनेरियो, आरजे, ब्राजील
एशिया
- बांडुंग फे संस्थान, सूर्या विश्वविद्यालय में जटिलता केंद्र, बांडुंग, इंडोनेशिया।
यूरोप
- सेंटर फॉर पॉलिसी मॉडलिंग, मैनचेस्टर, यूके।
- सेंटर फॉर रिसर्च इन सोशलसतत तंत्र, सरे विश्वविद्यालय, यूके।
- UCD डायनेमिक्स लैब- सेंटर फॉर कम्प्यूटेशनल सोशल साइंस, गीरी इंस्टीट्यूट फॉर पब्लिक पॉलिसी, यूनिवर्सिटी कॉलेज डबलिन, आयरलैंड।
- ग्रोनिंगन सेंटर फॉर सोशल कॉम्प्लेक्सिटी स्टडीज (जीसीएससीएस), ग्रोनिंगन, एनएल।
- चेयर ऑफ सोशियोलॉजी, इन स्पेशली ऑफ मॉडलिंग एंडसतत तंत्र (एसओएमएस), ज्यूरिख, स्विट्जरलैंड।
- रिसर्च ग्रुप ऑन एक्सपेरिमेंटल एंड कम्प्यूटेशनल सोशियोलॉजी (GECS), ब्रेशिया, इटली
श्रेणी:कम्प्यूटेशनल समाजशास्त्र
श्रेणी:जटिल तंत्र सिद्धांत
श्रेणी:समाजशास्त्र में तरीके
श्रेणी:अध्ययन के कम्प्यूटेशनल क्षेत्र