कुल वायु तापमान
विमानन स्थिरता तापमान में कुल वायु तापमान के रूप में जाना जाता है और इसे विमान की सतह पर लगाए गए तापमान जांच से मापा जाता है। जांच को विमान के सापेक्ष स्थिर करने के लिए वायु लाने के लिए रचना किया गया है। जैसे ही वायु को स्थिर करने के लिए लाया जाता है, गतिज ऊर्जा आंतरिक ऊर्जा में परिवर्तित हो जाती है। वायु संकुचित है और तापमान में रुद्धोष्म प्रक्रिया वृद्धि का अनुभव करती है। इसलिए कुल वायु का तापमान स्थिर (या परिवेश) वायु के तापमान से अधिक है।
स्थैतिक वायु के तापमान की गणना को सक्षम करने के लिए कुल वायु का तापमान एयर डेटा कंप्यूटर के लिए आवश्यक इनपुट है और इसलिए सही एयरस्पीड है।
स्थिर और कुल वायु तापमान के बीच संबंध निम्न द्वारा दिया जाता है:
अभ्यास में मैक 0.2 के अनुसार (सही) एयरस्पीड पर
- स्थैतिक वायु का तापमान, एसएटी (केल्विन या रैंकिन स्केल)
- कुल वायु का तापमान, टीएटी (केल्विन या डिग्री रैंकिन)
- मच संख्या
- विशिष्ट हीट का अनुपात, शुष्क वायु के लिए लगभग 1.400
अभ्यास में कुल वायु तापमान जांच वायु प्रवाह की ऊर्जा को पूरी तरह से पुनर्प्राप्त नहीं करती है, और तापमान वृद्धि पूरी तरह से रुद्धोष्म प्रक्रिया के कारण नहीं हो सकती है। इस स्थिति में क्षतिपूर्ति के लिए एक अनुभवजन्य पुनर्प्राप्ति कारक (1 से कम) प्रस्तुत किया जा सकता है:
|
(1) |
जहाँ e पुनर्प्राप्ति कारक है (Ct भी नोट किया गया है)
विशिष्ट पुनर्प्राप्ति कारक
प्लेटिनम वायर रेशियोमीटर थर्मामीटर (फ्लश बल्ब प्रकार): e ≈ 0.75 - 0.9
डबल प्लेटिनम ट्यूब रेशियोमीटर थर्मामीटर (टीएटी जांच): ई ≈ 1
अन्य संकेतन
कुल वायु तापमान (टीएटी) को संकेतित वायु तापमान (आईएटी) या रैम वायु तापमान (आरएटी) भी कहा जाता है।
स्थैतिक वायु तापमान (एसएटी) को बाहरी वायु तापमान (ओएटी) या वास्तविक वायु तापमान भी कहा जाता है |
रैम उदय
टीएटी और एसएटी के बीच के अंतर को रेम राइज (आरआर) कहा जाता है और यह उच्च वेग पर वायु की संपीड्यता और घर्षण के कारण होता है।
|
(2) |
अभ्यास में मैक 0.2 के अनुसार (सही) एयरस्पीड पर उड़ान भरने वाले विमानों के लिए रैम वृद्धि नगण्य है |
मच 0.2 से अधिक के एयरस्पीड्स (टीएएस) के लिए, जैसे ही एयरस्पीड बढ़ता है तापमान स्थिर वायु के तापमान से अधिक हो जाता है। यह काइनेटिक (घर्षण) हीटिंग और एडियाबेटिक प्रक्रिया के संयोजन के कारण होता है
- काइनेटिक हीटिंग जैसे-जैसे वायु की गति बढ़ती है, प्रति सेकंड वायु के अधिक से अधिक अणु विमान से टकराते हैं। यह घर्षण के कारण विमान के डायरेक्ट रीडिंग थर्मामीटर जांच में तापमान वृद्धि का कारण बनता है। क्योंकि वायु प्रवाह को संपीड़ित और आइसेंट्रोपिक प्रक्रिया माना जाता है, जो कि परिभाषा के अनुसार, रूद्धोष्म और प्रतिवर्ती है, इस लेख में प्रयुक्त समीकरण घर्षण ताप का मापदण्ड नहीं रखते हैं। यही कारण है कि स्थिर वायु के तापमान की गणना के लिए रिकवरी फैक्टर के उपयोग की आवश्यकता होती है, आधुनिक यात्री जेट विमानों के लिए काइनेटिक हीटिंग लगभग नगण्य है।
- एडियाबेटिक संपीड़न जैसा कि ऊपर बताया गया है, यह ऊर्जा के रूपांतरण के कारण होता है न कि ऊष्मा के सीधे प्रयोग से रिमोट रीडिंग टेम्परेचर प्रोब (टीएटी-प्रोब) में मच 0.2 से अधिक एयरस्पीड पर बाहरी एयरफ्लो होता है जो कई सौ समुद्री मील हो सकता है, वस्तुतः बहुत तेजी से स्थिर करने के लिए लाया जाता है। गतिमान वायु की ऊर्जा (विशिष्ट गतिज ऊर्जा) तब तापमान वृद्धि (विशिष्ट एन्थैल्पी) के रूप में जारी (परिवर्तित) होती है। ऊर्जा को नष्ट नहीं किया जा सकता है किन्तु केवल रूपांतरित किया जा सकता है इसका अर्थ है कि ऊष्मप्रवैगिकी के पहले नियम के अनुसार एक पृथक प्रणाली की कुल ऊर्जा स्थिर रहनी चाहिए।
काइनेटिक हीटिंग और एडियाबेटिक तापमान परिवर्तन (एडियाबेटिक कम्प्रेशन के कारण) का कुल योग 'टोटल रैम राइज' है।
संयोजन समीकरण (1) & (2), हम पाते हैं:
|
(3) |
जिसे सरल बनाया जा सकता है:
- ध्वनि की गति।
- ताप क्षमता अनुपात (ताप क्षमता का अनुपात) और विमानन उद्देश्यों के लिए 7/5 = 1.400 माना जाता है।
- गैस स्थिरांक का अनुमानित मूल्य शुष्क वायु के लिए 286.9 J·kg−1·K−1 है।
- निरंतर दबाव के लिए ताप क्षमता स्थिर है।
- निरंतर मात्रा के लिए ताप क्षमता स्थिर है।
- स्थिर वायु का तापमान, एसएटी, केल्विन में मापा जाता है।
- विमान का सच्चा एयरस्पीड, टीएएस है।
- पुनर्प्राप्ति कारक, जिसका अनुमानित मान 0.98 है, जो आधुनिक टीएटी-जांच के लिए विशिष्ट है।
टीएएस के साथ गांठों में उपरोक्त मानों के लिए (3) हल करके, रैम वृद्धि के लिए सरल स्पष्ट सूत्र है:
यह भी देखें
- स्थिरता बिंदु
- स्थिर तापमान
- बाहरी हवा का तापमान
- मच संख्या
- ध्वनि की गति
- एडियाबेटिक प्रक्रिया
- आइसेंट्रोपिक प्रक्रिया
- विशिष्ट तापीय धारिता