टोमोग्राफी

From Vigyanwiki
Revision as of 23:25, 14 June 2023 by alpha>Shivam
चित्र 1: टोमोग्राफी का मूल सिद्धांत: सुपरपोजिशन फ्री टोमोग्राफिक क्रॉस सेक्शन एस1 और एस2 (टोमोग्राफिक नहीं) अनुमानित छवि पी की तुलना में
चुंबकीय अनुनाद इमेजिंग द्वारा सिर का मंझला समतल सैजिटल प्लेन टोमोग्राफी।

टोमोग्राफी सेक्शन या सेक्शनिंग द्वारा इमेजिंग है जो किसी भी प्रकार की मर्मज्ञ तरंग का उपयोग करता है। विधि का उपयोग रेडियोलोजी , पुरातत्त्व, जीव विज्ञान, वायुमंडलीय विज्ञान, भूभौतिकी, समुद्र विज्ञान, प्लाज्मा भौतिकी, सामग्री विज्ञान, खगोल भौतिकी, क्वांटम सूचना और विज्ञान के अन्य क्षेत्रों में किया जाता है। टोमोग्राफी शब्द प्राचीन ग्रीक τόμος टोमोस, स्लाइस, सेक्शन और γράφω ग्राफो से लिया गया है, लिखने के लिए या, इस संदर्भ में भी, वर्णन करने के लिए। टोमोग्राफी में प्रयुक्त एक उपकरण को टोमोग्राफ कहा जाता है, जबकि निर्मित छवि एक टॉमोग्राम है।

कई स्तिथियों में, इन छवियों का उत्पादन गणितीय प्रक्रिया टोमोग्राफिक पुनर्निर्माण पर आधारित होता है, जैसे कि सीटी स्कैन| कई भिन्न-भिन्न पुनर्निर्माण एल्गोरिदम उपस्थित हैं। अधिकांश एल्गोरिदम दो श्रेणियों में से एक में आते हैं: फ़िल्टर्ड बैक प्रोजेक्शन (FBP) और पुनरावृत्त पुनर्निर्माण (IR)। ये प्रक्रियाएँ अचूक परिणाम देती हैं: लहर सटीकता और आवश्यक संगणना समय के मध्य एक समझौते का प्रतिनिधित्व करती हैं। एफबीपी कम कम्प्यूटेशनल संसाधनों की मांग करता है, जबकि आईआर सामान्यतः उच्च कंप्यूटिंग लागत पर कम कलाकृतियों (पुनर्निर्माण में त्रुटियां) का उत्पादन करता है।[1] चूँकि एमआरआई (चुंबकीय अनुनाद इमेजिंग), ऑप्टिकल कोहरेन्स टोमोग्राफी और अल्ट्रासाउंड ट्रांसमिशन विधियां हैं, उन्हें सामान्यतः विभिन्न दिशाओं से डेटा प्राप्त करने के लिए ट्रांसमीटर के आंदोलन की आवश्यकता नहीं होती है। एमआरआई में, स्थानिक रूप से भिन्न चुंबकीय क्षेत्रों को प्रारम्भ करके अनुमानों और उच्च स्थानिक हार्मोनिक्स दोनों का नमूना लिया जाता है; एक छवि उत्पन्न करने के लिए किसी हिलने वाले हिस्से की आवश्यकता नहीं होती है। दूसरी ओर, चूंकि अल्ट्रासाउंड और ऑप्टिकल सुसंगतता टोमोग्राफी समय-समय पर उड़ान का उपयोग प्राप्त सिग्नल को स्थानिक रूप से एन्कोड करने के लिए करती है, यह कड़ाई से एक टोमोग्राफिक विधि नहीं है और इसके लिए कई छवि अधिग्रहण की आवश्यकता नहीं होती है।

टोमोग्राफी के प्रकार

नाम Source of data Abbreviation Year of introduction
एरियल टोमोग्राफी Electromagnetic radiation AT 2020
Array tomography[2] Correlative light and electron microscopy AT 2007
Atom probe tomography Atom probe APT
Computed tomography imaging spectrometer[3] Visible light spectral imaging CTIS 2001
Computed tomography of chemiluminescence[4][5] Chemiluminescence Flames CTC 2009
Confocal microscopy (Laser scanning confocal microscopy) Laser scanning confocal microscopy LSCM
Cryogenic electron tomography Cryogenic transmission electron microscopy क्रायोएट
Electrical capacitance tomography Electrical capacitance ECT 1988[6]
Electrical capacitance volume tomography Electrical capacitance ECVT
Electrical resistivity tomography Electrical resistivity ERT
Electrical impedance tomography Electrical impedance EIT 1984
Electron tomography Transmission electron microscopy ET 1968[7][8]
Focal plane tomography X-ray 1930s
Functional magnetic resonance imaging Magnetic resonance fMRI 1992
Gamma-ray emission tomography ("Tomographic Gamma Scanning") Gamma ray TGS or ECT
Gamma-ray transmission tomography Gamma ray TCT
Hydraulic tomography fluid flow HT 2000
Infrared microtomographic imaging[9] Mid-infrared 2013
Laser Ablation Tomography Laser Ablation & Fluorescent Microscopy LAT 2013
Magnetic induction tomography Magnetic induction MIT
Magnetic particle imaging Superparamagnetism MPI 2005
Magnetic resonance imaging or nuclear magnetic resonance tomography Nuclear magnetic moment MRI or MRT
Multi-source tomography[10][11] X-ray
Muon tomography Muon
Microwave tomography[12] Microwave
Neutron tomography Neutron
Neutron stimulated emission computed tomography
Ocean acoustic tomography Sonar OAT
Optical coherence tomography Interferometry OCT
Optical diffusion tomography Absorption of light ODT
Optical projection tomography Optical microscope OPT
Photoacoustic imaging in biomedicine Photoacoustic spectroscopy PAT
Photoemission Orbital Tomography Angle-resolved photoemission spectroscopy POT 2009[13]
Positron emission tomography Positron emission PET
Positron emission tomography - computed tomography Positron emission & X-ray PET-CT
Quantum tomography Quantum state QST
Single-photon emission computed tomography Gamma ray SPECT
Seismic tomography Seismic waves
Terahertz tomography Terahertz radiation THz-CT
Thermoacoustic imaging Photoacoustic spectroscopy TAT
Ultrasound-modulated optical tomography Ultrasound UOT
Ultrasound computer tomography Ultrasound USCT
Ultrasound transmission tomography Ultrasound
X-ray computed tomography X-ray CT, CATScan 1971
X-ray microtomography X-ray microCT
Zeeman-Doppler imaging Zeeman effect

कुछ हालिया प्रगति एक साथ एकीकृत भौतिक घटनाओं का उपयोग करने पर निर्भर करती है, उदा। परिकलित टोमोग्राफी और एंजियोग्राफी दोनों के लिए एक्स-रे, संयुक्त कंप्यूटेड टोमोग्राफी / एमआरआई और संयुक्त कंप्यूटेड टोमोग्राफी / पोजीट्रान एमिशन टोमोग्राफी

दूसरी ओर असतत टोमोग्राफी और ज्यामितीय टोमोग्राफी अनुसंधान क्षेत्र हैं[citation needed] जो असतत (जैसे क्रिस्टल) या सजातीय वस्तुओं के पुनर्निर्माण से संबंधित है। वे पुनर्निर्माण के तरीकों से संबंधित हैं, और इस प्रकार वे ऊपर सूचीबद्ध किसी विशेष (प्रायोगिक) टोमोग्राफी विधियों तक सीमित नहीं हैं।

सिंक्रोट्रॉन एक्स-रे टोमोग्राफिक माइक्रोस्कोपी

सिंक्रोट्रॉन एक्स-रे टोमोग्राफिक माइक्रोस्कोपी (सीटी स्कैन) नामक एक नई तकनीक जीवाश्मों की विस्तृत त्रि-आयामी स्कैनिंग की अनुमति देती है।[14][15] डिटेक्टर प्रौद्योगिकी, डेटा भंडारण और प्रसंस्करण के जबरदस्त सुधार के साथ मिलकर तीसरी पीढ़ी के सिंक्रोट्रॉन प्रकाश स्रोत का निर्माण 1990 के दशक से क्षमताओं ने विभिन्न अनुप्रयोगों की एक विस्तृत श्रृंखला के साथ सामग्री अनुसंधान में उच्च अंत सिंक्रोट्रॉन टोमोग्राफी को बढ़ावा दिया है, उदा। एक नमूने में भिन्न-भिन्न अवशोषित चरणों, माइक्रोप्रोसिटीज, दरारें, अवक्षेप या अनाज का दृश्य और मात्रात्मक विश्लेषण। सिंक्रोट्रॉन विकिरण उच्च निर्वात में मुक्त कणों को गति देकर बनाया जाता है। इलेक्ट्रोडायनामिक्स के नियमों के अनुसार यह त्वरण विद्युत चुम्बकीय विकिरण (जैक्सन, 1975) के उत्सर्जन की ओर जाता है। रैखिक कण त्वरण एक संभावना है, किन्तु अधिक उच्च विद्युत क्षेत्रों के अतिरिक्त किसी को आवेशित कणों को एक पर रखने के लिए अधिक व्यावहारिक आवश्यकता होगी निरंतर विकिरण का स्रोत प्राप्त करने के लिए संवृत प्रक्षेपवक्र। चुंबकीय क्षेत्र का उपयोग कणों को वांछित कक्षा में धकेलने और उन्हें एक सीधी रेखा में उड़ने से रोकने के लिए किया जाता है। दिशा परिवर्तन से जुड़ा रेडियल त्वरण तब विकिरण उत्पन्न करता है।[16]


वॉल्यूम रेंडरिंग

3डी मॉडल बनाने के लिए मल्टीपल एक्स-रे सीटी स्कैन (मात्रात्मक गणना टोमोग्राफी के साथ)।

वॉल्यूम रेंडरिंग तकनीकों का एक सेट है जिसका उपयोग 3डी डिस्क्रीटली नमूनाकरण (सिग्नल प्रोसेसिंग) डेटा सेट के 2डी प्रोजेक्शन को प्रदर्शित करने के लिए किया जाता है, सामान्यतः एक 3डी अदिश क्षेत्र । एक विशिष्ट 3डी डेटा सेट 2डी स्लाइस छवियों का एक समूह है, उदाहरण के लिए, एक गणना अक्षीय टोमोग्राफी, चुंबकीय अनुनाद इमेजिंग, या माइक्रोटोमोग्राफी छवि स्कैनर द्वारा। ये सामान्यतः एक नियमित पैटर्न में प्राप्त होते हैं (उदाहरण के लिए, प्रत्येक मिलीमीटर का एक टुकड़ा) और सामान्यतःएक नियमित पैटर्न में छवि पिक्सेल की एक नियमित संख्या होती है।

यह एक नियमित वॉल्यूमेट्रिक ग्रिड का एक उदाहरण है, जिसमें प्रत्येक वॉल्यूम तत्व, या वॉक्सेल को एक मान द्वारा दर्शाया गया है जो वोक्सेल निकट के तत्काल क्षेत्र का नमूनाकरण करके प्राप्त किया जाता है।

3डी डेटा सेट के 2डी प्रोजेक्शन को प्रस्तुत करने के लिए, सबसे पहले वॉल्यूम के सापेक्ष अंतरिक्ष में एक वर्चुअल कैमरा को परिभाषित करने की आवश्यकता होती है। साथ ही, प्रत्येक स्वर की अपारदर्शिता (प्रकाशिकी) और रंग को परिभाषित करने की आवश्यकता है। यह सामान्यतः आरजीबीए कलर स्पेस (लाल, हरे, नीले, अल्फा के लिए) स्थानांतरण प्रकार्य का उपयोग करके परिभाषित किया जाता है जो हर संभव स्वर मूल्य के लिए आरजीबीए मान को परिभाषित करता है।

उदाहरण के लिए, वॉल्यूम से आइसोसर्फफेस (समान मूल्यों की सतह) निकालने और उन्हें बहुभुज जाल के रूप में प्रस्तुत करने या वॉल्यूम को डेटा के ब्लॉक के रूप में सीधे प्रस्तुत करके एक वॉल्यूम देखा जा सकता है। मार्चिंग क्यूब्स एल्गोरिथम वॉल्यूम डेटा से isosurface निकालने के लिए एक सामान्य तकनीक है। डायरेक्ट वॉल्यूम रेंडरिंग एक कम्प्यूटेशनल रूप से गहन कार्य है जिसे कई तरीकों से किया जा सकता है।

इतिहास

फोकल प्लेन टोमोग्राफी को 1930 के दशक में रेडियोलॉजिस्ट अलेक्जेंडर वैलेबोना द्वारा विकसित किया गया था, और प्रक्षेपण रेडियोग्राफी में संरचनाओं के सुपरइम्पोजिशन की समस्या को कम करने में उपयोगी सिद्ध करना हुआ।

मेडिकल जर्नल चेस्ट (जर्नल) में 1953 के एक लेख में, फोर्ट विलियम सेनेटोरियम के बी. पोलाक ने टोमोग्राफी के लिए एक और शब्द, प्लानोग्राफी के उपयोग का वर्णन किया।[17] 1970 के दशक के अंत में मुख्य रूप से गणना किए गए टोमोग्राफी द्वारा बड़े पैमाने पर प्रतिस्थापित किए जाने तक फोकल प्लेन टोमोग्राफी टोमोग्राफी का पारंपरिक रूप बना रहा।[18] फोकल प्लेन टोमोग्राफी इस तथ्य का उपयोग करती है कि फोकल प्लेन तेज दिखाई देता है, जबकि अन्य प्लेन में संरचनाएं धुंधली दिखाई देती हैं। एक्सपोजर के समय एक्स-रे स्रोत और फिल्म को विपरीत दिशाओं में ले जाकर, और आंदोलन की दिशा और सीमा को संशोधित करके, ऑपरेटर विभिन्न फोकल समतलों का चयन कर सकते हैं जिनमें रुचि की संरचनाएं होती हैं।

यह भी देखें

संदर्भ

  1. Herman, Gabor T. (2009). Fundamentals of Computerized Tomography: Image Reconstruction from Projections (2nd ed.). Dordrecht: Springer. ISBN 978-1-84628-723-7.
  2. Micheva, Kristina D.; Smith, Stephen J (July 2007). "Array Tomography: A New Tool for Imaging the Molecular Architecture and Ultrastructure of Neural Circuits". Neuron. 55 (1): 25–36. doi:10.1016/j.neuron.2007.06.014. PMC 2080672. PMID 17610815.
  3. Ford, Bridget K.; Volin, Curtis E.; Murphy, Sean M.; Lynch, Ronald M.; Descour, Michael R. (February 2001). "Computed Tomography-Based Spectral Imaging For Fluorescence Microscopy". Biophysical Journal. 80 (2): 986–993. Bibcode:2001BpJ....80..986F. doi:10.1016/S0006-3495(01)76077-8. PMC 1301296. PMID 11159465.
  4. Floyd, J.; Geipel, P.; Kempf, A.M. (February 2011). "Computed Tomography of Chemiluminescence (CTC): Instantaneous 3D measurements and Phantom studies of a turbulent opposed jet flame". Combustion and Flame. 158 (2): 376–391. doi:10.1016/j.combustflame.2010.09.006.
  5. Mohri, K; Görs, S; Schöler, J; Rittler, A; Dreier, T; Schulz, C; Kempf, A (10 September 2017). "Instantaneous 3D imaging of highly turbulent flames using computed tomography of chemiluminescence". Applied Optics. 56 (26): 7385–7395. Bibcode:2017ApOpt..56.7385M. doi:10.1364/AO.56.007385. PMID 29048060.
  6. Huang, S M; Plaskowski, A; Xie, C G; Beck, M S (1988). "Capacitance-based tomographic flow imaging system". Electronics Letters (in English). 24 (7): 418–19. Bibcode:1988ElL....24..418H. doi:10.1049/el:19880283.
  7. Crowther, R. A.; DeRosier, D. J.; Klug, A.; S, F. R. (1970-06-23). "The reconstruction of a three-dimensional structure from projections and its application to electron microscopy". Proc. R. Soc. Lond. A (in English). 317 (1530): 319–340. Bibcode:1970RSPSA.317..319C. doi:10.1098/rspa.1970.0119. ISSN 0080-4630. S2CID 122980366.
  8. Electron tomography: methods for three-dimensional visualization of structures in the cell (2nd ed.). New York: Springer. 2006. pp. 3. ISBN 9780387690087. OCLC 262685610.
  9. Martin, Michael C; Dabat-Blondeau, Charlotte; Unger, Miriam; Sedlmair, Julia; Parkinson, Dilworth Y; Bechtel, Hans A; Illman, Barbara; Castro, Jonathan M; Keiluweit, Marco; Buschke, David; Ogle, Brenda; Nasse, Michael J; Hirschmugl, Carol J (September 2013). "3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography". Nature Methods. 10 (9): 861–864. doi:10.1038/nmeth.2596. PMID 23913258. S2CID 9900276.
  10. Cramer, A., Hecla, J., Wu, D. et al. Stationary Computed Tomography for Space and other Resource-constrained Environments. Sci Rep 8, 14195 (2018). [1]
  11. V. B. Neculaes, P. M. Edic, M. Frontera, A. Caiafa, G. Wang and B. De Man, "Multisource X-Ray and CT: Lessons Learned and Future Outlook," in IEEE Access, vol. 2, pp. 1568-1585, 2014, doi: 10.1109/ACCESS.2014.2363949.[2]
  12. Ahadi, Mojtaba; Isa, Maryam; Saripan, M. Iqbal; Hasan, W. Z. W. (December 2015). "Three dimensions localization of tumors in confocal microwave imaging for breast cancer detection" (PDF). Microwave and Optical Technology Letters. 57 (12): 2917–2929. doi:10.1002/mop.29470. S2CID 122576324.
  13. Puschnig, P.; Berkebile, S.; Fleming, A. J.; Koller, G.; Emtsev, K.; Seyller, T.; Riley, J. D.; Ambrosch-Draxl, C.; Netzer, F. P.; Ramsey, M. G. (30 October 2009). "Reconstruction of Molecular Orbital Densities from Photoemission Data". Science. 326 (5953): 702–706. Bibcode:2009Sci...326..702P. doi:10.1126/science.1176105. PMID 19745118. S2CID 5476218.
  14. Donoghue, PC; Bengtson, S; Dong, XP; Gostling, NJ; Huldtgren, T; Cunningham, JA; Yin, C; Yue, Z; Peng, F; Stampanoni, M (10 August 2006). "जीवाश्म भ्रूण के सिंक्रोट्रॉन एक्स-रे टोमोग्राफिक माइक्रोस्कोपी।". Nature. 442 (7103): 680–3. Bibcode:2006Natur.442..680D. doi:10.1038/nature04890. PMID 16900198. S2CID 4411929.
  15. "Contributors to Volume 21". धातु, सूक्ष्म जीव और खनिज - जीवन का जैव-भूरासायनिक पक्ष. De Gruyter. 2021. pp. xix–xxii. doi:10.1515/9783110589771-004. ISBN 9783110588903. S2CID 243434346.
  16. Banhart, John, ed. Advanced Tomographic Methods in Materials Research and Engineering. Monographs on the Physics and Chemistry of Materials. Oxford ; New York: Oxford University Press, 2008.
  17. Pollak, B. (December 1953). "Experiences with Planography". Chest. 24 (6): 663–669. doi:10.1378/chest.24.6.663. ISSN 0012-3692. PMID 13107564. Archived from the original on 2013-04-14. Retrieved July 10, 2011.
  18. Littleton, J.T. "Conventional Tomography" (PDF). रेडियोलॉजिकल साइंसेज का इतिहास. American Roentgen Ray Society. Retrieved 29 November 2014.


बाहरी संबंध