कम्प्यूटेशनल अर्थशास्त्र
एक श्रृंखला का हिस्सा |
अर्थशास्त्र |
---|
|
कम्प्यूटेशनल अर्थशास्त्र एक अंतःविषय अनुसंधान अनुशासन है जिसमें कंप्यूटर विज्ञान, अर्थशास्त्र और प्रबंधन विज्ञान शामिल है।[1] यह विषय आर्थिक प्रणालियों के कम्प्यूटेशनल मॉडलिंग को शामिल करता है। इनमें से कुछ क्षेत्र अद्वितीय हैं, जबकि अन्य ने मजबूत डेटा विश्लेषण और समस्याओं के समाधान की अनुमति देकर अर्थशास्त्र के क्षेत्रों की स्थापना की, जो कंप्यूटर और संबद्ध संख्यात्मक विधियों के बिना अनुसंधान करना कठिन होगा।[2] अर्थशास्त्र अनुसंधान के विभिन्न क्षेत्रों में कम्प्यूटेशनल तरीकों को लागू किया गया है, जिसमें शामिल हैं लेकिन इन तक सीमित नहीं है: इकोनोमेट्रिक्स|
अर्थमिति: गैर-पैरामीट्रिक दृष्टिकोण, अर्ध-पैरामीट्रिक दृष्टिकोण और यंत्र अधिगम ।
डायनेमिक सिस्टम्स मॉडलिंग: ऑप्टिमाइजेशन, डायनेमिक स्टोचैस्टिक सामान्य संतुलन, और एजेंट-आधारित कम्प्यूटेशनल अर्थशास्त्र | एजेंट-आधारित मॉडलिंग।[3]
इतिहास
कम्प्यूटेशनल अर्थशास्त्र समवर्ती रूप से क्षेत्र के गणितीकरण के साथ विकसित हुआ। 20वीं शताब्दी की शुरुआत के दौरान जॉन टिनबर्गेन और रैगनार फ्रेश जैसे अग्रदूतों ने अर्थशास्त्र के कम्प्यूटरीकरण और अर्थमिति के विकास को आगे बढ़ाया। अर्थमिति में प्रगति के परिणामस्वरूप, प्रतिगमन विश्लेषण, सांख्यिकीय परिकल्पना परीक्षण और अन्य कम्प्यूटेशनल सांख्यिकीय विधियों को आर्थिक अनुसंधान में व्यापक रूप से अपनाया गया। सैद्धांतिक मोर्चे पर, वास्तविक व्यापार-चक्र सिद्धांत (आरबीसी) मॉडल और डायनेमिक स्टोकेस्टिक जनरल इक्विलिब्रियम (डीएसजीई) मॉडल सहित जटिल समष्टि अर्थशास्त्र मॉडल ने संख्यात्मक समाधान विधियों के विकास और अनुप्रयोग को प्रेरित किया है जो गणना पर बहुत अधिक निर्भर करते हैं। 21वीं सदी में, कम्प्यूटेशनल एल्गोरिदम के विकास ने आर्थिक अनुसंधान के साथ बातचीत करने के लिए कम्प्यूटेशनल तरीकों के लिए नए साधन तैयार किए। आर्थिक अनुसंधान के विभिन्न क्षेत्रों में मशीन लर्निंग मॉडल और एजेंट-आधारित मॉडलिंग जैसे नवीन दृष्टिकोणों का सक्रिय रूप से पता लगाया गया है, अर्थशास्त्रियों को एक विस्तारित टूलकिट की पेशकश की गई है जो अक्सर पारंपरिक तरीकों से चरित्र में भिन्न होती है।
अनुप्रयोग
एजेंट आधारित मॉडलिंग
कम्प्यूटेशनल अर्थशास्त्र विश्लेषणात्मक और सांख्यिकीय रूप से तैयार की गई आर्थिक समस्याओं को हल करने के लिए कंप्यूटर आधारित आर्थिक मॉडलिंग का उपयोग करता है। एक शोध कार्यक्रम, उस अंत तक, एजेंट-आधारित कम्प्यूटेशनल अर्थशास्त्र (एसीई) है, आर्थिक प्रक्रियाओं का कम्प्यूटेशनल अध्ययन, संपूर्ण अर्थव्यवस्था सहित, इंटरेक्टिंग एजेंट (अर्थशास्त्र) की गतिशील प्रणालियों के रूप में।[4] जैसे, यह जटिल अनुकूली प्रणाली प्रतिमान का आर्थिक अनुकूलन है।[5] यहां एजेंट कम्प्यूटेशनल ऑब्जेक्ट्स को संदर्भित करता है, जो नियमों के अनुसार इंटरेक्टिंग के रूप में तैयार किया गया है, वास्तविक लोगों के लिए नहीं।[3]एजेंट सामाजिक, जैविक और/या भौतिक संस्थाओं का प्रतिनिधित्व कर सकते हैं। इक्विलिब्रियम (अर्थशास्त्र) में एजेंटों द्वारा गणितीय अनुकूलन की सैद्धांतिक धारणा को एजेंटों के कम प्रतिबंधात्मक सिद्धांत द्वारा प्रतिस्थापित किया जाता है, जिसमें सीमित तर्कसंगतता बाजार की ताकतों के अनुकूल होती है,[6] खेल सिद्धांत सहित | गेम-सैद्धांतिक संदर्भ।[7] मॉडलर द्वारा निर्धारित प्रारंभिक स्थितियों से शुरू होकर, एक एसीई मॉडल पूरी तरह से एजेंट इंटरैक्शन द्वारा संचालित समय के माध्यम से आगे बढ़ता है। विधि का वैज्ञानिक उद्देश्य वास्तविक दुनिया के डेटा के खिलाफ सैद्धांतिक निष्कर्षों का परीक्षण उन तरीकों से करना है जो अनुभवजन्य रूप से समर्थित सिद्धांतों को समय के साथ संचित करने की अनुमति देते हैं।[8]
कम्प्यूटेशनल अर्थशास्त्र में मशीन लर्निंग
मशीन लर्निंग विशाल, जटिल, असंरचित डेटा सेट को हल करने के लिए एक विधि प्रस्तुत करता है। विभिन्न मशीन लर्निंग विधियों जैसे कर्नेल विधि और यादृच्छिक वन को डेटा खनन | डेटा-माइनिंग और सांख्यिकीय विश्लेषण में विकसित और उपयोग किया गया है। ये मॉडल पारंपरिक सांख्यिकीय मॉडल, जैसे कि स्टार मॉडल पद्धति की तुलना में बेहतर वर्गीकरण, भविष्य कहनेवाला क्षमता, लचीलापन प्रदान करते हैं। अन्य विधियाँ, जैसे कारणात्मक मशीन लर्निंग और कारणात्मक मॉडल, विशिष्ट लाभ प्रदान करते हैं, जिसमें अनुमान परीक्षण भी शामिल है।
आर्थिक अनुसंधान में मशीन लर्निंग टूल्स का उपयोग करने के उल्लेखनीय फायदे और नुकसान हैं। अर्थशास्त्र में, कारण मॉडल का चयन और विश्लेषण तुरंत किया जाता है। आर्थिक अनुसंधान सिद्धांत के आधार पर एक मॉडल का चयन करेगा, फिर डेटा के साथ मॉडल का परीक्षण/विश्लेषण करेगा, इसके बाद क्रॉस-सत्यापन (सांख्यिकी) | अन्य मॉडलों के साथ क्रॉस-सत्यापन। दूसरी ओर, मशीन लर्निंग मॉडल में अंतर्निहित ट्यूनिंग प्रभाव होते हैं। जैसा कि मॉडल अनुभवजन्य विश्लेषण करता है, यह समवर्ती रूप से विभिन्न मॉडलों को पार-सत्यापित करता है, अनुमान लगाता है और तुलना करता है। यह प्रक्रिया पारंपरिक लोगों की तुलना में अधिक मजबूत अनुमान लगा सकती है।
पारंपरिक अर्थशास्त्र मौजूदा सिद्धांतों के आधार पर डेटा को आंशिक रूप से सामान्य करता है, जबकि मशीन लर्निंग मॉडल फिटिंग के लिए अधिक सकारात्मक/अनुभवजन्य दृष्टिकोण प्रस्तुत करता है। हालांकि मशीन लर्निंग वर्गीकरण, भविष्यवाणी और फिट की अच्छाई का मूल्यांकन करने में उत्कृष्टता प्राप्त करता है, कई मॉडलों में सांख्यिकीय अनुमान की क्षमता का अभाव होता है, जो आर्थिक शोधकर्ताओं के लिए अधिक रुचि रखते हैं। मशीन लर्निंग मॉडल की सीमाओं का अर्थ है कि मशीन लर्निंग का उपयोग करने वाले अर्थशास्त्रियों को आधुनिक अनुभवजन्य अनुसंधान के मुख्य फोकस, मजबूत, आकस्मिक अनुमान के लिए रणनीति विकसित करने की आवश्यकता होगी। उदाहरण के लिए, अर्थशास्त्र के शोधकर्ता मशीन लर्निंग एल्गोरिदम में अच्छी तरह से निर्दिष्ट नहीं किए गए सत्यानाशी, आत्मविश्वास अंतराल और अन्य मापदंडों की पहचान करने की उम्मीद कर सकते हैं।[9] मशीन लर्निंग अर्थशास्त्र के आर्थिक मॉडलों में अधिक जटिल विषमता के विकास को प्रभावी ढंग से सक्षम कर सकता है। परंपरागत रूप से, विषम मॉडलों को व्यापक कम्प्यूटेशनल कार्य की आवश्यकता होती है। चूँकि विषमता स्वाद, विश्वास, योग्यता, कौशल या बाधाओं में अंतर हो सकती है, एक विषम मॉडल का अनुकूलन सजातीय दृष्टिकोण (प्रतिनिधि एजेंट) की तुलना में बहुत अधिक कठिन है।[10] रीइन्फोर्स्ड लर्निंग और डीप लर्निंग का विकास विषम विश्लेषण की जटिलता को काफी हद तक कम कर सकता है, ऐसे मॉडल बना सकता है जो अर्थव्यवस्था में एजेंटों के व्यवहार को बेहतर ढंग से दर्शाते हैं।[11] तंत्रिका नेटवर्क को अपनाने और लागू करने, कम्प्यूटेशनल अर्थशास्त्र के क्षेत्र में गहन शिक्षा डेटा सफाई और डेटा एनालिटिक्स के अनावश्यक काम को कम कर सकती है, बड़े पैमाने पर डेटा एनालिटिक्स के समय और लागत को काफी कम कर सकती है और शोधकर्ताओं को एक महान पर डेटा एकत्र करने, विश्लेषण करने में सक्षम बनाती है। पैमाना।[12] यह आर्थिक शोधकर्ताओं को नई मॉडलिंग विधियों का पता लगाने के लिए प्रोत्साहित करेगा। इसके अलावा, डेटा विश्लेषण पर कम जोर शोधकर्ताओं को विषय-वस्तु जैसे कारण संबंधी अनुमान, जटिल चर और मॉडल के यथार्थवाद पर अधिक ध्यान केंद्रित करने में सक्षम करेगा। उचित मार्गदर्शन के तहत, मशीन लर्निंग मॉडल बड़े पैमाने पर अनुभवजन्य डेटा विश्लेषण और संगणना के माध्यम से सटीक, लागू अर्थशास्त्र विकसित करने की प्रक्रिया को गति दे सकते हैं।[13]
डायनेमिक स्टोकेस्टिक जनरल इक्विलिब्रियम (DSGE) मॉडल
आर्थिक उतार-चढ़ाव का अनुकरण करने और नीतिगत परिवर्तनों के प्रभावों का परीक्षण करने के लिए व्यापक आर्थिक अनुसंधान में गतिशील मॉडलिंग विधियों को अक्सर अपनाया जाता है। कम्प्यूटेशनल तकनीकों और समाधानों पर भारी निर्भर गतिशील मॉडलों का डीएसजीई एक वर्ग। DSGE मॉडल सूक्ष्म-स्थापित आर्थिक सिद्धांतों का उपयोग करते हैं ताकि वास्तविक दुनिया की अर्थव्यवस्था की विशेषताओं को अंतर-कालिक पसंद अनिश्चितता वाले वातावरण में कैप्चर किया जा सके। उनकी अंतर्निहित जटिलता को देखते हुए, DSGE मॉडल सामान्य रूप से विश्लेषणात्मक रूप से अट्रैक्टिव होते हैं, और आमतौर पर कंप्यूटर सॉफ्टवेयर का उपयोग करके संख्यात्मक रूप से लागू किए जाते हैं। DSGE मॉडल का एक प्रमुख लाभ यह है कि वे लचीलेपन के साथ एजेंटों के गतिशील विकल्पों के अनुमान को सुगम बनाते हैं। हालांकि, कई विद्वानों ने डीएसजीई मॉडल की कम-रूप वाली धारणाओं पर निर्भरता के लिए आलोचना की है जो काफी हद तक अवास्तविक हैं।
कम्प्यूटेशनल उपकरण आर (प्रोग्रामिंग भाषा)
आर्थिक अनुसंधान में कम्प्यूटेशनल उपकरणों का उपयोग लंबे समय से आदर्श और आधार रहा है। अर्थशास्त्र के लिए कम्प्यूटेशनल टूल में विभिन्न प्रकार के कंप्यूटर सॉफ़्टवेयर शामिल हैं जो विभिन्न मैट्रिक्स संचालन (जैसे मैट्रिक्स उलटा) के निष्पादन की सुविधा प्रदान करते हैं और रेखीय और अरैखिक समीकरणों की प्रणालियों का समाधान करते हैं। डेटा एनालिटिक्स और मॉडलिंग के उद्देश्य से आर्थिक अनुसंधान में विभिन्न प्रोग्रामिंग भाषाओं का उपयोग किया जाता है। कम्प्यूटेशनल अर्थशास्त्र अनुसंधान में उपयोग की जाने वाली प्रोग्रामिंग भाषाओं की एक विशिष्ट सूची निम्नलिखित है:
C++, MATLAB, जूलिया (प्रोग्रामिंग भाषा) , पायथन (प्रोग्रामिंग लैंग्वेज), R (प्रोग्रामिंग लैंग्वेज), स्टाटा
इन प्रोग्रामिंग भाषाओं में, C++ संकलित भाषा के रूप में सबसे तेज़ प्रदर्शन करती है, जबकि व्याख्या की गई भाषा के रूप में पायथन सबसे धीमी है। MATLAB, जूलिया और आर प्रदर्शन और व्याख्या के बीच संतुलन हासिल करते हैं। प्रारंभिक सांख्यिकीय विश्लेषण सॉफ्टवेयर के रूप में, स्टाटा सबसे पारंपरिक प्रोग्रामिंग भाषा विकल्प था। अर्थशास्त्रियों ने अपनी चौड़ाई, सटीकता, लचीलेपन और दोहराव के कारण स्टाटा को सबसे लोकप्रिय सांख्यिकीय विश्लेषण कार्यक्रमों में से एक के रूप में अपनाया।
पत्रिकाओं
The following journals specialise in computational economics: ACM Transactions on Economics and Computation,[14] Computational Economics,[1] Journal of Applied Econometrics,[15] Journal of Economic Dynamics and Control[16] and the Journal of Economic Interaction and Coordination.[17]
संदर्भ
- ↑ 1.0 1.1 Computational Economics. ""About This Journal" and "Aims and Scope."
- ↑ • Hans M. Amman, David A. Kendrick, and John Rust, ed., 1996. Handbook of Computational Economics, v. 1, Elsevier. Description Archived 2011-07-15 at the Wayback Machine & chapter-preview links. Archived 2020-04-06 at the Wayback Machine • Kenneth L. Judd, 1998. Numerical Methods in Economics, MIT Press. Links to description Archived 2012-02-11 at the Wayback Machine and chapter previews.
- ↑ 3.0 3.1 Scott E. Page, 2008. "agent-based models," The New Palgrave Dictionary of Economics, 2nd Edition. Abstract.
- ↑ • Scott E. Page, 2008. "agent-based models," The New Palgrave Dictionary of Economics, 2nd Edition. Abstract. • Leigh Tesfatsion, 2006. "Agent-Based Computational Economics: A Constructive Approach to Economic Theory," ch. 16, Handbook of Computational Economics, v. 2, [pp. 831-880]. doi:10.1016/S1574-0021(05)02016-2. • Kenneth L. Judd, 2006. "Computationally Intensive Analyses in Economics," Handbook of Computational Economics, v. 2, ch. 17, pp. 881- 893. Pre-pub PDF. • L. Tesfatsion and K. Judd, ed., 2006. Handbook of Computational Economics, v. 2, Agent-Based Computational Economics, Elsevier. Description Archived 2012-03-06 at the Wayback Machine & and chapter-preview links. • Thomas J. Sargent, 1994. Bounded Rationality in Macroeconomics, Oxford. Description and chapter-preview 1st-page links.
- ↑ • W. Brian Arthur, 1994. "Inductive Reasoning and Bounded Rationality," American Economic Review, 84(2), pp. 406-411 Archived 2013-05-21 at the Wayback Machine. • Leigh Tesfatsion, 2003. "Agent-based Computational Economics: Modeling Economies as Complex Adaptive Systems," Information Sciences, 149(4), pp. 262-268 Archived April 26, 2012, at the Wayback Machine. • _____, 2002. "Agent-Based Computational Economics: Growing Economies from the Bottom Up," Artificial Life, 8(1), pp.55-82. Abstract and pre-pub PDF Archived 2013-05-14 at the Wayback Machine.
- ↑ • W. Brian Arthur, 1994. "Inductive Reasoning and Bounded Rationality," American Economic Review, 84(2), pp. 406-411 Archived 2013-05-21 at the Wayback Machine. • John H. Holland and John H. Miller (1991). "Artificial Adaptive Agents in Economic Theory," American Economic Review, 81(2), pp. 365-370 Archived 2011-01-05 at the Wayback Machine. • Thomas C. Schelling, 1978 [2006]. Micromotives and Macrobehavior, Norton. Description Archived 2017-11-02 at the Wayback Machine, preview. • Thomas J. Sargent, 1994. Bounded Rationality in Macroeconomics, Oxford. Description and chapter-preview 1st-page links.
- ↑ • Joseph Y. Halpern, 2008. "computer science and game theory," The New Palgrave Dictionary of Economics, 2nd Edition. Abstract. • Yoav Shoham, 2008. "Computer Science and Game Theory," Communications of the ACM, 51(8), pp. 75-79 Archived 2012-04-26 at the Wayback Machine. • Alvin E. Roth, 2002. "The Economist as Engineer: Game Theory, Experimentation, and Computation as Tools for Design Economics," Econometrica, 70(4), pp. 1341–1378 Archived 2004-04-14 at the Wayback Machine.
- ↑ Leigh Tesfatsion, 2006. "Agent-Based Computational Economics: A Constructive Approach to Economic Theory," ch. 16, Handbook of Computational Economics, v. 2, sect. 5, p. 865 [pp. 831-880]. doi:10.1016/S1574-0021(05)02016-2.
- ↑ Athey, Susan (2019), "The Impact of Machine Learning on Economics", The Economics of Artificial Intelligence, University of Chicago Press, pp. 507–552, doi:10.7208/chicago/9780226613475.003.0021, ISBN 9780226613338, S2CID 67460253, retrieved 2022-05-05
- ↑ Jesus, Browning, Martin Carro (2006). विषमता और सूक्ष्म अर्थमिति मॉडलिंग. CAM, Centre for Applied Microeconometrics. OCLC 1225293761.
{{cite book}}
: CS1 maint: multiple names: authors list (link) - ↑ Charpentier, Arthur; Élie, Romuald; Remlinger, Carl (2021-04-23). "अर्थशास्त्र और वित्त में सुदृढीकरण सीखना". Computational Economics (in English). arXiv:2003.10014. doi:10.1007/s10614-021-10119-4. ISSN 1572-9974. S2CID 214612371.
- ↑ Farrell, Max H.; Liang, Tengyuan; Misra, Sanjog (2021). "अनुमान और अनुमान के लिए डीप न्यूरल नेटवर्क". Econometrica. 89 (1): 181–213. doi:10.3982/ecta16901. ISSN 0012-9682. S2CID 203696381.
- ↑ "Deep learning for individual heterogeneity: an automatic inference framework". 2021-07-27. doi:10.47004/wp.cem.2021.2921. S2CID 236428783.
{{cite journal}}
: Cite journal requires|journal=
(help) - ↑ "ACM Teac".
- ↑ "Journal of Applied Econometrics". Wiley Online Library. 2011. doi:10.1002/(ISSN)1099-1255. Retrieved October 31, 2011.
- ↑ Journal of Economic Dynamics and Control, including Aims & scope link. For a much-cited overview and issue, see: • Leigh Tesfatsion, 2001. "Introduction to the Special Issue on Agent-based Computational Economics," Journal of Economic Dynamics & Control, pp. 281-293. • [Special issue], 2001. Journal of Economic Dynamics and Control, Agent-based Computational Economics (ACE). 25(3-4), pp. 281-654. Abstract/outline links[permanent dead link].
- ↑ "Journal of Economic Interaction and Coordination". springer.com. 2011. Retrieved October 31, 2011.
बाहरी संबंध
- Society for Computational Economics
- Journal of Economic Dynamics and Control - publishes articles on computational economics
- Agent-Based Computational Economics - maintained by Leigh Tesfatsion
- The Use of Agent-Based Models in Regional Science - a study on agent-based models to simulate urban agglomeration
- Computational Economics with Python - a series of lectures
- Computational Finance and Economic Agents
- Journal of Economic Interaction and Coordination - official journal of the Association of Economic Science with Heterogeneous Interacting Agents
- Chair of Economic Policy, University of Bamberg (Germany)
- Repository of public-domain computational solutions