समस्थानिक हस्ताक्षर

From Vigyanwiki
Revision as of 11:07, 18 May 2023 by alpha>Indicwiki (Created page with "{{short description|Mathematical ratio used in analysis of radioactive materials}} एक समस्थानिक हस्ताक्षर (समस्थानिक...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

एक समस्थानिक हस्ताक्षर (समस्थानिक फिंगरप्रिंट भी) गैर-रेडियोजनिक 'स्थिर आइसोटोप अनुपात', स्थिर रेडियोजेनिक न्यूक्लाइड, या एक जांच सामग्री में विशेष तत्वों के अस्थिर रेडियोधर्मी आइसोटोप का अनुपात है। एक नमूना सामग्री में आइसोटोप के अनुपात को आइसोटोप-अनुपात द्रव्यमान स्पेक्ट्रोमेट्री द्वारा स्थिर आइसोटोप विश्लेषण के लिए एक संदर्भ सामग्री के खिलाफ मापा जाता है। इस प्रक्रिया को आइसोटोप विश्लेषण कहा जाता है।

स्थिर समस्थानिक

विभिन्न समस्थानिकों का परमाणु द्रव्यमान उनके रासायनिक कैनेटीक्स व्यवहार को प्रभावित करता है, जिससे प्राकृतिक समस्थानिक पृथक्करण प्रक्रियाएँ होती हैं।

कार्बन समस्थानिक

Algal group δ13C range[1]
HCO3-using red algae −22.5‰ to −9.6‰
CO2-using red algae −34.5‰ to −29.9‰
Brown algae −20.8‰ to −10.5‰
Green algae −20.3‰ to −8.8‰

उदाहरण के लिए, मीथेन के विभिन्न स्रोतों और सिंकों में कार्बन-12| के लिए अलग-अलग बंधुता होती है12C और कार्बन-13|13C समस्थानिक, जो विभिन्न स्रोतों के बीच अंतर करने की अनुमति देता है 13सी/12हवा में मीथेन में C अनुपात। गेओचेमिस्त्र्य , पूर्व-जलवायु और paleoceanography में इस अनुपात को Δ13C|δ कहा जाता है13सी. स्थिर आइसोटोप विश्लेषण के लिए Δ13C#संदर्भ मानक (पीडीबी) संदर्भ सामग्री के संबंध में अनुपात की गणना की जाती है:

इसी तरह, अकार्बनिक कार्बोनेट में कार्बन थोड़ा समस्थानिक विभाजन दिखाता है, जबकि प्रकाश संश्लेषण द्वारा उत्पन्न सामग्री में कार्बन भारी समस्थानिकों से कम हो जाता है। इसके अलावा, विभिन्न जैव रासायनिक मार्गों वाले दो प्रकार के पौधे हैं; C3 कार्बन निर्धारण, जहाँ आइसोटोप पृथक्करण प्रभाव अधिक स्पष्ट होता है, C4 कार्बन निर्धारण, जहाँ भारी होता है 13C कम क्षीण होता है, और Crassulacean Acid Metabolism (CAM) पौधे, जहाँ प्रभाव समान होता है लेकिन C की तुलना में कम स्पष्ट होता है4 पौधे। पौधों में समस्थानिक विभाजन भौतिक (धीमी गति से प्रसार) के कारण होता है 13परमाणु भार में वृद्धि के कारण पौधों के ऊतकों में सी) और जैव रासायनिक (की वरीयता 12C दो एंजाइमों द्वारा: RuBisCO और फॉस्फोनिओलफ्रुवेट कार्बोक्सिलेज) कारक।[2] दो प्रकार के पौधों के लिए अलग-अलग आइसोटोप अनुपात खाद्य श्रृंखला के माध्यम से फैलते हैं, इस प्रकार यह निर्धारित करना संभव है कि मानव या जानवर के मुख्य आहार में मुख्य रूप से सी होता है या नहीं।3 पौधे (चावल, गेहूं, सोयाबीन, आलू) या सी4 उनके मांस और हड्डी कोलेजन के आइसोटोप विश्लेषण द्वारा पौधों (मक्का, या मकई से भरे गोमांस) (हालांकि, अधिक सटीक निर्धारण प्राप्त करने के लिए, कार्बन समस्थानिक विभाजन को भी ध्यान में रखा जाना चाहिए, क्योंकि कई अध्ययनों ने महत्वपूर्ण रिपोर्ट की है 13सरल और जटिल सबस्ट्रेट्स के बायोडिग्रेडेशन के दौरान सी भेदभाव)।[3][4] C3 पौधों के भीतर δ में परिवर्तन को नियंत्रित करने वाली प्रक्रियाएँ13C अच्छी तरह से समझ में आता है, विशेष रूप से पत्ती के स्तर पर,[5] बल्कि लकड़ी के निर्माण के दौरान भी।[6][7] हाल के कई अध्ययन लकड़ी के गठन के वार्षिक पैटर्न (यानी ट्री रिंग δ13सी) जलवायु परिवर्तन और वायुमंडलीय संरचना के प्रभावों की मात्रा निर्धारित करने के लिए[8] व्यक्तिगत पेड़ों और वन स्टैंडों की शारीरिक प्रक्रियाओं पर।[9] समझने का अगला चरण, कम से कम स्थलीय पारिस्थितिक तंत्र में, पौधों, मिट्टी और वातावरण के बीच बातचीत को समझने के लिए कई समस्थानिक प्रॉक्सी का संयोजन प्रतीत होता है, और भविष्यवाणी करता है कि भूमि उपयोग में परिवर्तन जलवायु परिवर्तन को कैसे प्रभावित करेगा।[10] इसी तरह समुद्री मछलियों में अधिक होता है मीठे पानी की मछली की तुलना में 13C, C के लगभग मान के साथ4 और सी3 क्रमशः पौधे। इस प्रकार के पौधों में कार्बन-13 तथा कार्बन-12 समस्थानिकों का अनुपात इस प्रकार है-[11]

  • सी4 पौधे: -16 से -10 ‰
  • सीएएम संयंत्र: -20 से -10 ‰
  • सी3 पौधे: -33 से -24 ‰

वायुमंडलीय कार्बन डाइऑक्साइड से समुद्र में वर्षण द्वारा निर्मित चूना पत्थर में सामान्य अनुपात होता है 13सी. इसके विपरीत, नमक के गुंबदों में पाए जाने वाले केल्साइट की उत्पत्ति पेट्रोलियम के ऑक्सीकरण से बनने वाली कार्बन डाइऑक्साइड से होती है, जो इसके पौधे की उत्पत्ति के कारण है 13सी-हटा दिया गया। पर्मियन विलुप्त होने पर जमा चूना पत्थर की परत 252 Mya को 1% की गिरावट से पहचाना जा सकता है 13सी/12सी.

कार्बन-14|14C आइसोटोप जैवसंश्लेषित सामग्री को मानव निर्मित सामग्री से अलग करने में महत्वपूर्ण है। बायोजेनिक रसायन बायोस्फेरिक कार्बन से प्राप्त होते हैं, जिसमें शामिल होता है 14सी. कृत्रिम रूप से बनाए गए रसायनों में कार्बन आमतौर पर कोयला या पेट्रोलियम जैसे जीवाश्म ईंधन से प्राप्त होता है, जहां कार्बन 14सी मूल रूप से मौजूद पता लगाने योग्य सीमा से नीचे क्षय हो गया है। की राशि 14सी वर्तमान में एक नमूने में मौजूद है इसलिए बायोजेनिक मूल के कार्बन के अनुपात को इंगित करता है।

नाइट्रोजन समस्थानिक

नाइट्रोजन के समस्थानिक#नाइट्रोजन-15|नाइट्रोजन-15, या 15एन, अक्सर कृषि और चिकित्सा अनुसंधान में प्रयोग किया जाता है, उदाहरण के लिए डीएनए प्रतिकृति की प्रकृति को स्थापित करने के लिए मेसल्सन-स्टाल प्रयोग में।[12] इस शोध के एक विस्तार के परिणामस्वरूप डीएनए-आधारित स्थिर-आइसोटोप जांच का विकास हुआ, जो सूक्ष्मजीवविज्ञानी संस्कृति अलगाव की आवश्यकता के बिना, पर्यावरण में सूक्ष्मजीवों की चयापचय क्रिया और टैक्सोनॉमी (जीव विज्ञान) की पहचान के बीच संबंधों की जांच की अनुमति देता है।[13][14] युक्त माध्यम में खेती करके प्रोटीन को आइसोटोपिक रूप से लेबल किया जा सकता है 15N नाइट्रोजन के एकमात्र स्रोत के रूप में, उदाहरण के लिए, SILAC जैसे मात्रात्मक प्रोटिओमिक्स में।

वातावरण में अमोनियाकल नाइट्रोजन#खनिज नाइट्रोजन यौगिकों (विशेष रूप से उर्वरक) का पता लगाने के लिए नाइट्रोजन-15 का बड़े पैमाने पर उपयोग किया जाता है। अन्य समस्थानिक लेबल के उपयोग के साथ संयुक्त होने पर, 15एन नाइट्रोजनस स्थायी जैविक प्रदूषक के भाग्य का वर्णन करने के लिए एक बहुत ही महत्वपूर्ण समस्थानिक अनुरेखक भी है।[15][16] नाइट्रोजन-15 अनुरेखण जैवभूरसायन में उपयोग की जाने वाली एक महत्वपूर्ण विधि है।

स्थिर नाइट्रोजन समस्थानिकों का अनुपात, 15एन/नाइट्रोजन के आइसोटोप#नाइट्रोजन-14|14एन या δ15N|δ15एन, पोषी स्तर के साथ बढ़ने लगता है, जैसे कि शाकाहारियों में पौधों की तुलना में उच्च नाइट्रोजन समस्थानिक मूल्य होते हैं, और मांसाहारियों में शाकाहारियों की तुलना में उच्च नाइट्रोजन समस्थानिक मूल्य होते हैं। जिस ऊतक (जीव विज्ञान) की जांच की जा रही है, उसके आधार पर पोषी स्तर में प्रत्येक वृद्धि के साथ प्रति हजार 3-4 भागों की वृद्धि होती है।[17] शाकाहारी लोगों के ऊतकों और बालों में काफी कम δ होता है15ज्यादातर मांस खाने वाले लोगों के शरीर से ज्यादा। इसी तरह, एक स्थलीय आहार समुद्री-आधारित आहार की तुलना में एक अलग हस्ताक्षर पैदा करता है। समस्थानिक बालों का विश्लेषण पुरातत्व के लिए जानकारी का एक महत्वपूर्ण स्रोत है, जो प्राचीन आहारों के बारे में सुराग प्रदान करता है और खाद्य स्रोतों के लिए अलग-अलग सांस्कृतिक दृष्टिकोण रखता है।[18] कई अन्य पर्यावरणीय और शारीरिक कारक खाद्य वेब के आधार पर (यानी पौधों में) या व्यक्तिगत जानवरों के स्तर पर नाइट्रोजन समस्थानिक संरचना को प्रभावित कर सकते हैं। उदाहरण के लिए, शुष्क क्षेत्रों में, नाइट्रोजन चक्र अधिक 'खुला' होता है और इसके नुकसान की संभावना होती है 14N, वर्धमान δ15मिट्टी और पौधों में N.[19] यह अपेक्षाकृत उच्च δ की ओर जाता है15गर्म और शुष्क पारिस्थितिक तंत्र में पौधों और जानवरों में कूलर और नम पारिस्थितिक तंत्र के सापेक्ष N मान।[20] इसके अलावा, ऊंचा δ15N को 14N के अधिमान्य उत्सर्जन और लंबे समय तक पानी के तनाव की स्थिति या अपर्याप्त प्रोटीन सेवन के तहत शरीर में पहले से समृद्ध 15N ऊतकों के पुन: उपयोग से जोड़ा गया है।[21][22] डी15एन ग्रहीय विज्ञान में एक नैदानिक ​​उपकरण भी प्रदान करता है क्योंकि वायुमंडल और सतह सामग्री में प्रदर्शित अनुपात उन स्थितियों से निकटता से जुड़ा हुआ है जिनके तहत सामग्री बनती है।[23]


ऑक्सीजन समस्थानिक

ऑक्सीजन तीन रूपों में आता है, लेकिन 17ऑक्सीजन इतना दुर्लभ है कि इसका पता लगाना बहुत मुश्किल है (~0.04% प्रचुर मात्रा में)।[24] का अनुपात 18ओ/16पानी में O पानी के अनुभव किए गए वाष्पीकरण की मात्रा पर निर्भर करता है (जैसे 18O भारी है और इसलिए इसके वाष्पीकृत होने की संभावना कम है)। चूँकि वाष्प तनाव घुलित लवणों की सांद्रता पर निर्भर करता है, इसलिए 18ऑक्सीजन/16O अनुपात पानी की लवणता और तापमान पर सहसंबंध दर्शाता है। जैसे ही ऑक्सीजन कैल्शियम कार्बोनेट स्रावित करने वाले जीवों के गोले में निर्मित होता है, ऐसे तलछट क्षेत्र में पानी के तापमान और लवणता के कालानुक्रमिक रिकॉर्ड को साबित करते हैं।

वायुमंडल में ऑक्सीजन समस्थानिक अनुपात वर्ष के समय और भौगोलिक स्थिति के साथ अनुमानित रूप से भिन्न होता है; उदा. के बीच 2% का अंतर है 18मोंटाना में ओ-समृद्ध वर्षा और 18फ्लोरिडा कीज़ में O-हटाए गए अवक्षेपण। इस परिवर्तनशीलता का उपयोग सामग्री की उत्पत्ति के भौगोलिक स्थान के अनुमानित निर्धारण के लिए किया जा सकता है; उदा. यह निर्धारित करना संभव है कि यूरेनियम ऑक्साइड के शिपमेंट का उत्पादन कहाँ किया गया था। पर्यावरण के साथ सतह के समस्थानिकों के आदान-प्रदान की दर को ध्यान में रखना होगा।[25] ठोस नमूनों (कार्बनिक और अकार्बनिक) के ऑक्सीजन समस्थानिक हस्ताक्षर आमतौर पर पायरोलिसिस और मास स्पेक्ट्रोमेट्री से मापा जाता है।[26] सटीक माप के लिए शोधकर्ताओं को नमूनों के अनुचित या लंबे समय तक भंडारण से बचने की जरूरत है।[26]


सल्फर समस्थानिक

सल्फर के चार स्थिर समस्थानिक होते हैं, 32गंधक , 33एस, 34एस, और 36एस, जिनमें से 32S एक बड़े अंतर से सबसे प्रचुर मात्रा में है, इस तथ्य के कारण कि यह सिलिकॉन-बर्निंग प्रक्रिया है। बहुत ही सामान्य द्वारा बनाई गई 12सुपरनोवा में सी. सल्फर आइसोटोप अनुपात लगभग हमेशा अनुपात के रूप में व्यक्त किए जाते हैं 32S इस प्रमुख सापेक्ष प्रचुरता (95.0%) के कारण। सल्फर आइसोटोप अंशों को आमतौर पर Δ34S|δ के संदर्भ में मापा जाता है34S सल्फर के समस्थानिकों की तुलना में इसकी उच्च प्रचुरता (4.25%) के कारण, हालांकि δ33S को भी कभी-कभी मापा जाता है। माना जाता है कि सल्फर आइसोटोप अनुपात में अंतर मुख्य रूप से प्रतिक्रियाओं और परिवर्तनों के दौरान गतिज विभाजन के कारण होता है।

सल्फर समस्थानिकों को आम तौर पर मानकों के विरुद्ध मापा जाता है; 1993 से पहले, कैन्यन डियाब्लो (उल्कापिंड) ट्रिलाइट मानक (संक्षिप्त रूप में [[कैन्यन डियाब्लो ट्रोलाइट]]), जिसमें एक 32स:3422.220 के बराबर एस, समस्थानिक पैमाने के लिए संदर्भ सामग्री और शून्य बिंदु दोनों के रूप में उपयोग किया गया था। 1993 से, वियना-सीडीटी मानक का उपयोग शून्य बिंदु के रूप में किया गया है, और स्थिर आइसोटोप विश्लेषण के लिए संदर्भ सामग्री के रूप में उपयोग की जाने वाली कई सामग्रियां हैं। इन मानकों के खिलाफ मापी गई प्राकृतिक प्रक्रियाओं द्वारा सल्फर अंशों को -72‰ और +147‰ के बीच मौजूद दिखाया गया है,[27][28] निम्नलिखित समीकरण द्वारा गणना के अनुसार:

Natural sulfur isotope values
Natural Source δ34S range
Petroleum[29] -32‰ to -8‰
River water[30] -8‰ to 10‰
Lunar rocks[30] -2‰ to 2.5‰
Meteorites[30] 0‰ to 2‰
Ocean water[30] 17‰ to 20‰
Most relevant isotopes of sulfur
Isotope Abundance Half-life
32S 94.99% Stable
33S 0.75% Stable
34S 4.25% Stable
35S <0.1% 87.4 days
36S 0.01% Stable

एक बहुत ही रिडॉक्स | रेडॉक्स-सक्रिय तत्व के रूप में, सल्फर पृथ्वी के पूरे इतिहास में प्रमुख रसायन-परिवर्तनकारी घटनाओं को रिकॉर्ड करने के लिए उपयोगी हो सकता है। पृथ्वी का इतिहास, जैसे कि समुद्री वाष्पीकरण, जो महान ऑक्सीकरण घटना द्वारा लाए गए वातावरण के रेडॉक्स राज्य में परिवर्तन को दर्शाता है।[31][32]


रेडियोजेनिक समस्थानिक

सीसा समस्थानिक

लीड में सीसा के चार स्थिर समस्थानिक होते हैं: 204पंजाब, 206पंजाब, 207पंजाब, और 208पंजाब. यूरेनियम/थोरियम/सीसा सामग्री में स्थानीय भिन्नता विभिन्न इलाकों से नेतृत्व करना के लिए समस्थानिक अनुपात के व्यापक स्थान-विशिष्ट भिन्नता का कारण बनती है। औद्योगिक प्रक्रियाओं द्वारा वायुमंडल में उत्सर्जित सीसे की एक समस्थानिक संरचना होती है जो खनिजों में सीसे से भिन्न होती है। टेट्राइथाइलैड एडिटिव के साथ पेट्रोल के दहन से कार के निकास धुएं में सर्वव्यापी माइक्रोमीटर-आकार के सीसे से भरपूर कण बनते हैं; विशेष रूप से शहरी क्षेत्रों में मानव निर्मित सीसे के कण प्राकृतिक की तुलना में बहुत अधिक सामान्य हैं। वस्तुओं में पाए जाने वाले कणों में समस्थानिक सामग्री के अंतर का उपयोग वस्तु की उत्पत्ति के अनुमानित भौगोलिक स्थान के लिए किया जा सकता है।[25]


रेडियोधर्मी समस्थानिक

गर्म कण, परमाणु पतन के रेडियोधर्मी कण और रेडियोधर्मी अपशिष्ट भी विशिष्ट समस्थानिक हस्ताक्षर प्रदर्शित करते हैं। उनकी रेडियोन्यूक्लाइड संरचना (और इस प्रकार उनकी उम्र और उत्पत्ति) मास स्पेक्ट्रोमेट्री या गामा किरण स्पेक्ट्रोमीटर द्वारा निर्धारित की जा सकती है। उदाहरण के लिए, परमाणु विस्फोट से उत्पन्न कणों में पता लगाने योग्य मात्रा होती है 60कोबाल्ट और 152यूरोपियम। चेरनोबिल दुर्घटना ने इन कणों को छोड़ा नहीं बल्कि छोड़ा था 125सुरमा और 144सैरियम पानी के नीचे फटने से निकलने वाले कणों में ज्यादातर किरणित समुद्री लवण होंगे। का अनुपात 152यूरोप/155मैं, 154मैं/155यूरोपीय संघ, और 238प्लूटोनियम/239पु संलयन और विखंडन परमाणु हथियारों के लिए भी भिन्न हैं, जो अज्ञात मूल के गर्म कणों की पहचान करने की अनुमति देता है।

~ 0.72% के साथ सभी प्राकृतिक नमूनों में यूरेनियम का अपेक्षाकृत स्थिर आइसोटोप अनुपात है 235
U
कुछ 55 भाग प्रति मिलियन 234
U
(अपने मूल न्यूक्लाइड के साथ धर्मनिरपेक्ष संतुलन में 238
U
) और इसके द्वारा बनाई गई शेष राशि 238
U
. समस्थानिक रचनाएँ जो उन मूल्यों से महत्वपूर्ण रूप से भिन्न होती हैं, यूरेनियम के लिए साक्ष्य हैं जो किसी तरह से कमी या यूरेनियम संवर्धन के अधीन हैं या (इसके हिस्से में) परमाणु विखंडन प्रतिक्रिया में भाग ले रहे हैं। जबकि उत्तरार्द्ध लगभग पहले के दो के रूप में मानव प्रभाव के कारण सार्वभौमिक रूप से है, ठीक , गैबॉन में प्राकृतिक परमाणु विखंडन रिएक्टर का एक महत्वपूर्ण मोड़ के माध्यम से पता चला था 235
U
पृथ्वी पर अन्य सभी ज्ञात निक्षेपों की तुलना में ओक्लो से नमूनों में सांद्रता। मान लें कि 235
U
एक विशेष परमाणु सामग्री है, क्योंकि अब यूरेनियम ईंधन का प्रत्येक अंतर्राष्ट्रीय परमाणु ऊर्जा एजेंसी-अनुमोदित आपूर्तिकर्ता यूरेनियम की समस्थानिक संरचना पर नज़र रखता है ताकि यह सुनिश्चित हो सके कि किसी को भी नापाक उद्देश्यों के लिए डायवर्ट नहीं किया गया है। इस प्रकार यह जल्दी से स्पष्ट हो जाएगा यदि ओक्लो के अलावा एक और यूरेनियम जमा एक प्राकृतिक परमाणु विखंडन रिएक्टर साबित होता है।

अनुप्रयोग

पुरातात्विक अध्ययन

पुरातात्विक अध्ययनों में, व्यक्तियों से विश्लेषित ऊतकों (हड्डी कोलेजन के लिए 10-15 वर्ष और दाँत तामचीनी बायोएपटाइट के लिए अंतर-वार्षिक अवधि) के समय अवधि के भीतर आहार को ट्रैक करने के लिए स्थिर आइसोटोप अनुपात का उपयोग किया गया है; खाद्य पदार्थों के व्यंजन (सिरेमिक बर्तन अवशेष); खेती के स्थान और उगाए जाने वाले पौधों के प्रकार (तलछट से रासायनिक निष्कर्ष); और व्यक्तियों का प्रवासन (दंत सामग्री)।[citation needed]

फोरेंसिक

स्थिर आइसोटोप अनुपात द्रव्यमान स्पेक्ट्रोमेट्री के आगमन के साथ, सामग्रियों के समस्थानिक हस्ताक्षर फोरेंसिक में बढ़ते उपयोग को ढूंढते हैं, अन्यथा समान सामग्रियों की उत्पत्ति को अलग करते हैं और सामग्री को उनके सामान्य स्रोत पर नज़र रखते हैं। उदाहरण के लिए, पौधों के आइसोटोप हस्ताक्षर नमी और पोषक तत्वों की उपलब्धता सहित विकास की स्थिति से प्रभावित एक हद तक हो सकते हैं। सिंथेटिक सामग्री के मामले में, हस्ताक्षर रासायनिक प्रतिक्रिया के दौरान स्थितियों से प्रभावित होता है। आइसोटोपिक सिग्नेचर प्रोफाइलिंग उन मामलों में उपयोगी है जहां अन्य प्रकार की प्रोफाइलिंग, उदा। अशुद्धियों का लक्षण वर्णन, इष्टतम नहीं हैं। स्किंटिलेटर डिटेक्टरों के साथ मिलकर इलेक्ट्रॉनिक्स नियमित रूप से आइसोटोप हस्ताक्षरों का मूल्यांकन करने और अज्ञात स्रोतों की पहचान करने के लिए उपयोग किया जाता है।

बैकिंग पॉलिमर, एडिटिव्स और चिपकने वाले कार्बन, ऑक्सीजन और हाइड्रोजन समस्थानिक हस्ताक्षर का उपयोग करके एक सामान्य भूरे रंग के दबाव संवेदनशील चिपकने वाले पैकेजिंग टेप की उत्पत्ति के निर्धारण की संभावना का प्रदर्शन करते हुए एक अध्ययन प्रकाशित किया गया था।[33] शहद में मिलावट का पता लगाने के लिए कार्बन समस्थानिक अनुपात का मापन किया जा सकता है। मकई या गन्ने (C4 पौधों) से उत्पन्न शर्करा का मिश्रण शहद में मौजूद शर्करा के समस्थानिक अनुपात को कम कर देता है, लेकिन प्रोटीन के समस्थानिक अनुपात को प्रभावित नहीं करता है; बिना मिलावट वाले शहद में शर्करा और प्रोटीन के कार्बन समस्थानिक अनुपात का मिलान होना चाहिए।[34] कम से कम 7% के अतिरिक्त स्तर का पता लगाया जा सकता है।[35] नाभिकीय विस्फोटों से बेरिलियम-10 बनता है10तेज़ न्यूट्रॉन की प्रतिक्रिया से हो 13सी हवा में कार्बन डाइऑक्साइड में। यह परमाणु परीक्षण स्थलों पर पिछली गतिविधि के ऐतिहासिक संकेतकों में से एक है।[36]


सौर मंडल की उत्पत्ति

सौर मंडल में सामग्रियों की उत्पत्ति का अध्ययन करने के लिए समस्थानिक उंगलियों के निशान का उपयोग किया जाता है।[37] उदाहरण के लिए, चंद्रमा के ऑक्सीजन अनुपात के समस्थानिक अनिवार्य रूप से पृथ्वी के समान प्रतीत होते हैं।[38] ऑक्सीजन समस्थानिक अनुपात, जिसे बहुत सटीक रूप से मापा जा सकता है, प्रत्येक सौर मंडल निकाय के लिए एक अद्वितीय और विशिष्ट हस्ताक्षर उत्पन्न करता है।[39] विभिन्न ऑक्सीजन समस्थानिक हस्ताक्षर अंतरिक्ष में निकाले गए पदार्थ की उत्पत्ति का संकेत दे सकते हैं।[40] चंद्रमा का टाइटेनियम आइसोटोप अनुपात (50तिवारी/47Ti) पृथ्वी के करीब (4 पीपीएम के भीतर) दिखाई देता है।[41][42] 2013 में, एक अध्ययन जारी किया गया था जिसमें संकेत दिया गया था कि पानी के समस्थानिकों की संरचना के आधार पर चंद्र मेग्मा में पानी कार्बोनेसस चोंड्रेइट्स से 'अप्रभेद्य' था और पृथ्वी के लगभग समान था।[37][43]


पृथ्वी पर प्रारंभिक जीवन के अभिलेख

समस्थानिक भू-रसायन विज्ञान का उपयोग आसपास के जीवन की समयरेखा और जीवन के प्रारंभिक विकास की जांच के लिए किया गया है। तलछट में संरक्षित जीवन के विशिष्ट समस्थानिक उंगलियों के निशान का उपयोग सुझाव देने के लिए किया गया है, लेकिन जरूरी नहीं कि यह साबित हो कि 3.85 अरब साल पहले पृथ्वी पर जीवन पहले से ही अस्तित्व में था।[44] सल्फर आइसोटोप साक्ष्य का उपयोग महान ऑक्सीकरण घटना के समय की पुष्टि करने के लिए भी किया गया है, जिसके दौरान पृथ्वी का वातावरण | पृथ्वी के वायुमंडल में ऑक्सीजन में मापनीय वृद्धि हुई (आधुनिक मूल्यों का लगभग 9% तक)[45]) पहली बार लगभग 2.3-2.4 अरब साल पहले। लगभग 2.45 अरब साल पहले भूगर्भिक रिकॉर्ड में बड़े पैमाने पर स्वतंत्र सल्फर आइसोटोप विभाजन व्यापक रूप से पाए जाते हैं, और ये समस्थानिक हस्ताक्षर बड़े पैमाने पर निर्भर अंशांकन के लिए सौंपे गए हैं, जो इस बात का पुख्ता सबूत देते हैं कि उस सीमा पर वातावरण एनोक्सिक से ऑक्सीजनयुक्त में स्थानांतरित हो गया।[46] आधुनिक सल्फेट-कम करने वाले बैक्टीरिया लाइटर को अनुकूल रूप से कम करने के लिए जाने जाते हैं 32एस के बजाय 34एस, और इन सूक्ष्मजीवों की उपस्थिति समुद्र के सल्फर आइसोटोप संरचना को काफी हद तक बदल सकती है।[31]क्योंकि Δ34S|δ34सल्फ़ाइड खनिजों के एस मान मुख्य रूप से सल्फेट-कम करने वाले सूक्ष्मजीव|सल्फ़ेट-कम करने वाले बैक्टीरिया की उपस्थिति से प्रभावित होते हैं,[47] सल्फाइड खनिजों में सल्फर आइसोटोप अंशों की अनुपस्थिति इन जीवाणु प्रक्रियाओं की अनुपस्थिति या स्वतंत्र रूप से उपलब्ध सल्फेट की अनुपस्थिति का सुझाव देती है। कुछ लोगों ने माइक्रोबियल सल्फर अंशांकन के इस ज्ञान का उपयोग यह सुझाव देने के लिए किया है कि अनुमानित समुद्री जल संरचना के सापेक्ष बड़े सल्फर आइसोटोप विभाजन वाले खनिज (अर्थात् पाइराइट) जीवन का प्रमाण हो सकते हैं।[48][49] हालांकि, यह दावा स्पष्ट नहीं है, और कभी-कभी पश्चिमी ऑस्ट्रेलिया के ड्रेसर गठन में पाए जाने वाले ~3.49 Ga सल्फाइड खनिजों से भूगर्भीय साक्ष्य का उपयोग करके चुनाव लड़ा जाता है, जिसमें Δ34S|δ पाए जाते हैं34S का मान -22‰ जितना ऋणात्मक है।[50] क्योंकि यह सिद्ध नहीं हुआ है कि प्रमुख हाइड्रोथर्मल इनपुट की अनुपस्थिति में बनने वाले सल्फाइड और बेराइट खनिज, यह आर्कियन में जीवन या माइक्रोबियल सल्फेट कमी मार्ग का निर्णायक सबूत नहीं है।[51]


यह भी देखें

संदर्भ

  1. Maberly, S. C.; Raven, J. A.; Johnston, A. M. (1992). "Discrimination between 12C and 13C by marine plants". Oecologia. 91 (4): 481. doi:10.1007/BF00650320. JSTOR 4220100.
  2. Nobel, Park S. (7 February 2005). भौतिक रासायनिक और पर्यावरण संयंत्र फिजियोलॉजी. p. 411. ISBN 9780125200264.
  3. Fernandez, Irene; Cadisch, Georg (2003). "Discrimination against13C during degradation of simple and complex substrates by two white rot fungi". Rapid Communications in Mass Spectrometry. 17 (23): 2614–2620. Bibcode:2003RCMS...17.2614F. doi:10.1002/rcm.1234. ISSN 0951-4198. PMID 14648898.
  4. Fernandez, I.; Mahieu, N.; Cadisch, G. (2003). "विभिन्न गुणवत्ता के पौधों की सामग्री के अपघटन के दौरान कार्बन समस्थानिक विभाजन". Global Biogeochemical Cycles. 17 (3): n/a. Bibcode:2003GBioC..17.1075F. doi:10.1029/2001GB001834. ISSN 0886-6236.
  5. Farquhar, G D; Ehleringer, J R; Hubick, K T (1989). "कार्बन आइसोटोप भेदभाव और प्रकाश संश्लेषण". Annual Review of Plant Physiology and Plant Molecular Biology. 40 (1): 503–537. doi:10.1146/annurev.pp.40.060189.002443. ISSN 1040-2519. S2CID 12988287.
  6. McCarroll, Danny; Loader, Neil J. (2004). "ट्री रिंग्स में स्थिर समस्थानिक". Quaternary Science Reviews. 23 (7–8): 771–801. Bibcode:2004QSRv...23..771M. CiteSeerX 10.1.1.336.2011. doi:10.1016/j.quascirev.2003.06.017. ISSN 0277-3791.
  7. Ewe, Sharon M.L; da Silveira Lobo Sternberg, Leonel; Busch, David E (1999). "दक्षिण फ्लोरिडा के पिनलैंड और झूला समुदायों में वुडी प्रजातियों के जल-उपयोग पैटर्न". Forest Ecology and Management. 118 (1–3): 139–148. doi:10.1016/S0378-1127(98)00493-9. ISSN 0378-1127.
  8. Cabaneiro, Ana; Fernandez, Irene (2015). "Disclosing biome sensitivity to atmospheric changes: Stable C isotope ecophysiological dependences during photosynthetic uptake in Maritime pine and Scots pine ecosystems from southwestern Europe". Environmental Technology & Innovation. 4: 52–61. doi:10.1016/j.eti.2015.04.007. ISSN 2352-1864.
  9. Silva, Lucas C. R.; Anand, Madhur; Shipley, Bill (2013). "Probing for the influence of atmospheric CO2and climate change on forest ecosystems across biomes". Global Ecology and Biogeography. 22 (1): 83–92. doi:10.1111/j.1466-8238.2012.00783.x. ISSN 1466-822X.
  10. Gómez-Guerrero, Armando; Silva, Lucas C. R.; Barrera-Reyes, Miguel; Kishchuk, Barbara; Velázquez-Martínez, Alejandro; Martínez-Trinidad, Tomás; Plascencia-Escalante, Francisca Ofelia; Horwath, William R. (2013). "विकास में गिरावट और अपसारी ट्री रिंग समस्थानिक रचना (δ13C और δ18O) उच्च ऊंचाई वाले जंगलों में CO2 उत्तेजना के विरोधाभासी पूर्वानुमान". Global Change Biology. 19 (6): 1748–1758. Bibcode:2013GCBio..19.1748G. doi:10.1111/gcb.12170. ISSN 1354-1013. PMID 23504983. S2CID 39714321.
  11. O'Leary, M. H. (1988). "प्रकाश संश्लेषण में कार्बन समस्थानिक". BioScience. 38 (5): 328–336. doi:10.2307/1310735. JSTOR 1310735. S2CID 29110460.
  12. Meselson, M.; Stahl, F. W. (1958). "ई में डीएनए की प्रतिकृति। कोलाई ". Proceedings of the National Academy of Sciences of the United States of America. 44 (7): 671–682. Bibcode:1958PNAS...44..671M. doi:10.1073/pnas.44.7.671. PMC 528642. PMID 16590258.
  13. Radajewski, S.; McDonald, I. R.; Murrell, J. C. (2003). "Stable-isotope probing of nucleic acids: a window to the function of uncultured microorganisms". Current Opinion in Biotechnology. 14 (3): 296–302. doi:10.1016/s0958-1669(03)00064-8. PMID 12849783.
  14. Cupples, A. M.; Shaffer, E. A.; Chee-Sanford, J. C.; Sims, G. K. (2007). "DNA buoyant density shifts during 15N DNA stable isotope probing". Microbiological Research. 162 (4): 328–334. doi:10.1016/j.micres.2006.01.016. PMID 16563712.
  15. Marsh, K. L.; Sims, G. K.; Mulvaney, R. L. (2005). "Availability of urea to autotrophic ammonia-oxidizing bacteria as related to the fate of 14C- and 15N-labeled urea added to soil". Biology and Fertility of Soils. 42 (2): 137–145. doi:10.1007/s00374-005-0004-2. S2CID 6245255.
  16. Bichat, F.; Sims, G. K.; Mulvaney, R. L. (1999). "एट्राज़ीन से हेट्रोसायक्लिक नाइट्रोजन का माइक्रोबियल उपयोग". Soil Science Society of America Journal. 63 (1): 100–110. Bibcode:1999SSASJ..63..100B. doi:10.2136/sssaj1999.03615995006300010016x.
  17. Adams, Thomas S.; Sterner, Robert W. (2000). "The effect of dietary nitrogen content on trophic level 15N enrichment". Limnol. Oceanogr. 45 (3): 601–607. Bibcode:2000LimOc..45..601A. doi:10.4319/lo.2000.45.3.0601.
  18. Richards, M. P.; Trinkaus, E. (2009). "यूरोपीय निएंडरथल और प्रारंभिक आधुनिक मनुष्यों के आहार के लिए समस्थानिक साक्ष्य". Proceedings of the National Academy of Sciences. 106 (38): 16034–16039. doi:10.1073/pnas.0903821106. PMC 2752538. PMID 19706482.
  19. Handley, L.L; Austin, A. T.; Stewart, G.R.; Robinson, D.; Scrimgeour, C.M.; Raven, J.A.; Heaton, T.H.E.; Schmidt, S. (1999). "The 15N natural abundance (δ15N) of ecosystem samples reflects measures of water availability". Aust. J. Plant Physiol. 26 (2): 185–199. doi:10.1071/pp98146. ISSN 0310-7841.closed access
  20. Szpak, Paul; White, Christine D.; Longstaffe, Fred J.; Millaire, Jean-Francois; Vásquez Sánchez, Victor F. (2013). "Carbon and Nitrogen Isotopic Survey of Northern Peruvian Plants: Baselines for Paleodietary and Paleoecological Studies". PLOS ONE. 8 (1): e53763. Bibcode:2013PLoSO...853763S. doi:10.1371/journal.pone.0053763. PMC 3547067. PMID 23341996.
  21. Ambrose, Stanley H.; DeNiro, Michael J. (1986). "पूर्वी अफ्रीकी स्तनधारियों की समस्थानिक पारिस्थितिकी". Oecologia. 69 (3): 395–406. Bibcode:1986Oecol..69..395A. doi:10.1007/bf00377062. PMID 28311342. S2CID 22660367.
  22. Hobson, Keith A.; Alisauskas, Ray T.; Clark, Robert G. (1993). "Stable-Nitrogen Isotope Enrichment in Avian Tissues Due to Fasting and Nutritional Stress: Implications for Isotopic Analyses of Diet". The Condor. 95 (2): 388. doi:10.2307/1369361. JSTOR 1369361.
  23. Dyches, Preston; Clavin, Whitney (June 23, 2014). "टाइटन के बिल्डिंग ब्लॉक्स शनि से पहले के हो सकते हैं" (Press release). Jet Propulsion Laboratory. Retrieved June 28, 2014.
  24. de Laeter, John Robert; Böhlke, John Karl; De Bièvre, Paul; Hidaka, Hiroshi; Peiser, H. Steffen; Rosman, Kevin J. R.; Taylor, Philip D. P. (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry. 75 (6): 683–800. doi:10.1351/pac200375060683.
  25. 25.0 25.1 Moody, Kenton J.; Hutcheon, Ian D.; Grant, Patrick M. (28 February 2005). परमाणु फोरेंसिक विश्लेषण. p. 399. ISBN 9780203507803.
  26. 26.0 26.1 Tsang, Man-Yin; Yao, Weiqi; Tse, Kevin (2020). Kim, Il-Nam (ed.). "ऑक्सीकृत चांदी के कप छोटे नमूनों के ऑक्सीजन आइसोटोप के परिणाम को तिरछा कर सकते हैं". Experimental Results (in English). 1: e12. doi:10.1017/exp.2020.15. ISSN 2516-712X.
  27. Lever, Mark A.; Rouxel, Olivier; Alt, Jeffrey C.; Shimizu, Nobumichi; Ono, Shuhei; Coggon, Rosalind M.; Shanks, Wayne C.; Lapham, Laura; Elvert, Marcus; Prieto-Mollar, Xavier; Hinrichs, Kai-Uwe (2013-03-01). "डीपली बरीड रिज फ्लैंक बेसाल्ट में माइक्रोबियल कार्बन और सल्फर साइकिलिंग के लिए साक्ष्य". Science (in English). 339 (6125): 1305–1308. Bibcode:2013Sci...339.1305L. doi:10.1126/science.1229240. ISSN 0036-8075. PMID 23493710. S2CID 10728606.
  28. Drake, Henrik; Roberts, Nick M. W.; Reinhardt, Manuel; Whitehouse, Martin; Ivarsson, Magnus; Karlsson, Andreas; Kooijman, Ellen; Kielman-Schmitt, Melanie (2021-06-03). "प्राचीन माइक्रोबियल जीवन के बायोसिग्नेचर फेनोस्कैंडियन शील्ड की आग्नेय परत में मौजूद हैं". Communications Earth & Environment (in English). 2 (1): 1–13. doi:10.1038/s43247-021-00170-2. ISSN 2662-4435. S2CID 235307116.
  29. Hannan, Keith (1998), "Sulfur isotopes in geochemistry", Geochemistry, Encyclopedia of Earth Science (in English), Dordrecht: Springer Netherlands, pp. 610–615, doi:10.1007/1-4020-4496-8_309, ISBN 978-1-4020-4496-0, retrieved 2022-05-08
  30. 30.0 30.1 30.2 30.3 Stable Isotope Geochemistry | SpringerLink (PDF). Springer Textbooks in Earth Sciences, Geography and Environment (in British English). 2021. doi:10.1007/978-3-030-77692-3. ISBN 978-3-030-77691-6. S2CID 238480248.
  31. 31.0 31.1 Seal, Robert R., II (2006-01-01). "सल्फाइड खनिजों की सल्फर आइसोटोप जियोकेमिस्ट्री". Reviews in Mineralogy and Geochemistry. 61 (1): 633–677. Bibcode:2006RvMG...61..633S. doi:10.2138/rmg.2006.61.12. ISSN 1529-6466.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  32. Farquhar, James; Bao, Huiming; Thiemens, Mark (2000-08-04). "पृथ्वी के प्रारंभिक सल्फर चक्र का वायुमंडलीय प्रभाव". Science (in English). 289 (5480): 756–758. Bibcode:2000Sci...289..756F. doi:10.1126/science.289.5480.756. ISSN 0036-8075. PMID 10926533.
  33. Carter, James F.; Grundy, Polly L.; Hill, Jenny C.; Ronan, Neil C.; Titterton, Emma L.; Sleeman, Richard (2004). "पैकेजिंग टेप के फोरेंसिक आइसोटोप अनुपात मास स्पेक्ट्रोमेट्री". Analyst. 129 (12): 1206–1210. Bibcode:2004Ana...129.1206C. doi:10.1039/b409341k. PMID 15565219.
  34. González Martín, I.; Marqués Macías, E.; Sánchez Sánchez, J.; González Rivera, B. (1998). "स्थिर आइसोटोप पद्धति का उपयोग करके चुकंदर के साथ शहद की मिलावट का पता लगाना". Food Chemistry. 61 (3): 281–286. doi:10.1016/S0308-8146(97)00101-5.
  35. "Tracking Nature: Geographical fingerprints in food ingredients add transparency to organic chain" (PDF). Canadian Honey Council. November 2004. pp. 10–11. Archived from the original (PDF) on 2014-01-01. Retrieved 30 April 2021.
  36. Whitehead, Ne; Endo, S; Tanaka, K; Takatsuji, T; Hoshi, M; Fukutani, S; Ditchburn, Rg; Zondervan, A (2008). "(10) परमाणु विस्फोट स्थलों के फोरेंसिक रेडियोइकोलॉजी में (10) के उपयोग पर एक प्रारंभिक अध्ययन।". Journal of Environmental Radioactivity. 99 (2): 260–70. doi:10.1016/j.jenvrad.2007.07.016. PMID 17904707.
  37. 37.0 37.1 Spudis, Paul D. (May 14, 2013). "Earth-Moon: A Watery "Double-Planet"". Archived from the original on 2013-08-07. Retrieved April 30, 2021.
  38. Wiechert, U.; et al. (October 2001). "ऑक्सीजन समस्थानिक और चंद्रमा बनाने वाला विशाल प्रभाव". Science. 294 (12): 345–348. Bibcode:2001Sci...294..345W. doi:10.1126/science.1063037. PMID 11598294. S2CID 29835446.
  39. Scott, Edward R. D. (December 3, 2001). "ऑक्सीजन समस्थानिक ग्रहों, चंद्रमाओं और क्षुद्रग्रहों के निर्माण का सुराग देते हैं". Planetary Science Research Discoveries Report: 55. Bibcode:2001psrd.reptE..55S. Retrieved 2014-01-01.
  40. Nield, Ted (September 2009). "मूनवॉक". Geological Society of London. p. 8. Retrieved 2014-01-01.
  41. Zhang, Junjun; Nicolas Dauphas; Andrew M. Davis; Ingo Leya; Alexei Fedkin (25 March 2012). "चंद्र सामग्री के एक महत्वपूर्ण स्रोत के रूप में प्रोटो-अर्थ". Nature Geoscience. 5 (4): 251–255. Bibcode:2012NatGe...5..251Z. doi:10.1038/ngeo1429. S2CID 38921983.
  42. Koppes, Steve (March 28, 2012). "टाइटेनियम पितृत्व परीक्षण पृथ्वी को चंद्रमा के एकमात्र माता-पिता के रूप में दर्शाता है". Zhang, Junjun. The University of Chicago. Retrieved 2014-01-01.
  43. Saal, A. E.; Hauri, E. H.; Van Orman, J. A.; Rutherford, M. J. (2013). "चंद्र ज्वालामुखीय चश्मे और पिघल समावेशन में हाइड्रोजन समस्थानिक एक कार्बोनेसस चोंड्रेइट विरासत को प्रकट करते हैं". Science. 340 (6138): 1317–1320. Bibcode:2013Sci...340.1317S. doi:10.1126/science.1235142. PMID 23661641. S2CID 9092975.
  44. Mojzsis, S. J.; Arrhenius, G.; McKeegan, K. D.; Harrison, T. M.; Nutman, A. P.; Friend, C. R. L. (November 1996). "Evidence for life on Earth before 3,800 million years ago". Nature (in English). 384 (6604): 55–59. Bibcode:1996Natur.384...55M. doi:10.1038/384055a0. hdl:2060/19980037618. ISSN 1476-4687. PMID 8900275. S2CID 4342620.
  45. Holland, Heinrich D (2006-06-29). "वायुमंडल और महासागरों का ऑक्सीकरण". Philosophical Transactions of the Royal Society B: Biological Sciences. 361 (1470): 903–915. doi:10.1098/rstb.2006.1838. PMC 1578726. PMID 16754606.
  46. Papineau, Dominic; Mojzsis, Stephen J.; Schmitt, Axel K. (2007-03-15). "पैलियोप्रोटेरोज़ोइक ह्यूरोनियन इंटरग्लेशियल तलछट और वायुमंडलीय ऑक्सीजन के उदय से कई सल्फर आइसोटोप". Earth and Planetary Science Letters (in English). 255 (1): 188–212. Bibcode:2007E&PSL.255..188P. doi:10.1016/j.epsl.2006.12.015. ISSN 0012-821X.
  47. Canfield, D. E. (2001-01-01). "सल्फर समस्थानिकों की जैवभूरसायन". Reviews in Mineralogy and Geochemistry. 43 (1): 607–636. Bibcode:2001RvMG...43..607C. doi:10.2138/gsrmg.43.1.607. ISSN 1529-6466.
  48. Archer, Corey; Vance, Derek (2006-03-01). "आर्कियन माइक्रोबियल Fe (III) और सल्फेट की कमी के लिए युग्मित Fe और S आइसोटोप साक्ष्य". Geology. 34 (3): 153–156. Bibcode:2006Geo....34..153A. doi:10.1130/G22067.1. ISSN 0091-7613.
  49. Wacey, David; McLoughlin, Nicola; Whitehouse, Martin J.; Kilburn, Matt R. (2010-12-01). "Two coexisting sulfur metabolisms in a ca. 3400 Ma sandstone". Geology. 38 (12): 1115–1118. Bibcode:2010Geo....38.1115W. doi:10.1130/G31329.1. ISSN 0091-7613.
  50. Philippot, Pascal; Zuilen, Mark; Lepot, Kevin; Thomazo, Christophe; Farquhar, James; Van Kranendonk, Martin (2007-09-14). "शुरुआती आर्कियन सूक्ष्मजीवों ने एलिमेंटल सल्फर को प्राथमिकता दी, सल्फेट को नहीं". Science. 317 (5844): 1534–1537. Bibcode:2007Sci...317.1534P. doi:10.1126/science.1145861. PMID 17872441. S2CID 41254565.
  51. Early Life on Earth | SpringerLink (PDF). Topics in Geobiology (in British English). Vol. 31. 2009. doi:10.1007/978-1-4020-9389-0. ISBN 978-1-4020-9388-3.


अग्रिम पठन