इमेजिंग स्पेक्ट्रोमीटर
इमेजिंग स्पेक्ट्रोमीटर एक उपकरण है जिसका उपयोग हाइपरस्पेक्ट्रल इमेजिंग और इमेजिंग स्पेक्ट्रोस्कोपी में किसी वस्तु या दृश्य की वर्णक्रमीय रूप से हल की गई इमेज को प्राप्त करने के लिए किया जाता है,[1][2] जिसे अधिकाश डेटा के त्रि-आयामी प्रतिनिधित्व के कारण डेटाक्यूब के रूप में संदर्भित किया जाता है। इमेज के दो अक्ष ऊर्ध्वाधर और क्षैतिज दूरी से और तीसरे तरंग दैर्ध्य से मेल खाते हैं। ऑपरेशन का सिद्धांत साधारण स्पेक्ट्रोमीटर के समान है, परंतु बेहतर इमेज गुणवत्ता के लिए ऑप्टिकल पतन से बचने के लिए विशेष ध्यान रखा जाता है।
उदाहरण इमेजिंग स्पेक्ट्रोमीटर प्रकारों में सम्मलित हैं: फ़िल्टर्ड कैमरा, व्हिस्कब्रूम स्कैनर, पुशब्रूम स्कैनर, इंटीग्रल फील्ड स्पेक्ट्रोग्राफ, वेज इमेजिंग स्पेक्ट्रोमीटर, फूरियर ट्रांसफॉर्म इमेजिंग स्पेक्ट्रोमीटर, कंप्यूटेड टोमोग्राफी इमेजिंग स्पेक्ट्रोमीटर , इमेज रेप्लिकेटिंग इमेजिंग स्पेक्ट्रोमीटर, कोडेड अपर्चर स्नैपशॉट स्पेक्ट्रल इमेजर, और इमेज मैपिंग स्पेक्ट्रोमीटर होते है।
सिद्धांत
इमेजिंग स्पेक्ट्रोमीटर का उपयोग विशेष रूप से प्रकाश और विद्युत चुम्बकीय प्रकाश की वर्णक्रमीय सामग्री को मापने के उद्देश्य से किया जाता है। एकत्रित वर्णक्रमीय डेटा का उपयोग ऑपरेटर को विकिरण के स्रोतों के बारे में जानकारी देने के लिए किया जाता है। वर्णक्रम स्पेक्ट्रोमीटर एक अपवर्तक तत्व के रूप में एक वर्णक्रम के माध्यम से विकिरण को फैलाने की शास्त्रीय विधि का उपयोग करते हैं।
इमेजिंग स्पेक्ट्रोमीटर एक स्रोत इमेजिंग के माध्यम से एक विकिरण स्रोत को इमेजिंग करके काम करता है जिसे "स्लिट" कहा जाता है। एक संधानक बीम को समतल करता है जो एक अपवर्तक वर्णक्रम द्वारा फैलाया जाता है और एक पुन: इमेज द्वारा एक पहचान प्रणाली पर फिर से चित्रित किया जाता है। स्लिट पर स्रोत की सर्वोत्तम संभव इमेज बनाने के लिए विशेष ध्यान रखा जाता है। समांतरित्र और री-इमेजिंग प्रकाशिकी का उद्देश्य स्लिट की सर्वोत्तम संभव इमेज लेना है। तत्वों की एक क्षेत्र-सरणी इस स्तर पर समीकर प्रणाली है। स्रोत इमेज को प्रत्येक पॉइंट पर रेखा वर्णक्रम के रूप में फिर से चित्रित किया जाता है जिसे डिटेक्टर-ऐरे कॉलम कहा जाता है। डिटेक्टर ऐरे सिग्नल वर्णक्रमीय सामग्री से संबंधित डेटा की आपूर्ति करते हैं, विशेष रूप से, स्रोत क्षेत्र के अंदर स्थानिक रूप से हल किए गए स्रोत पॉइंट होते है। इन स्रोत पॉइंट्स को स्लिट पर अंकित किया जाता है और फिर संसूचक सरणी पर फिर से चित्रित किया जाता है। इसके साथ ही, सिस्टम स्रोत क्षेत्र और इसके स्थानिक रूप से हल किए गए पॉइंट्स की रेखा के बारे में वर्णक्रमीय जानकारी प्रदान करता है। वर्णक्रमीय सामग्री के बारे में जानकारी का एक डेटाबेस बनाने के लिए रेखा को तब स्कैन किया जाता है।[3]
अनुप्रयोग
ग्रहों का अवलोकन
इमेजिंग स्पेक्ट्रोमीटर का व्यावहारिक अनुप्रयोग यह है कि उनका उपयोग उपग्रहों की परिक्रमा से पृथ्वी ग्रह का निरीक्षण करने के लिए किया जाता है। स्पेक्ट्रोमीटर प्रतिमा पर रंग के सभी पॉइंट्स को रिकॉर्ड करके कार्य करता है, इस प्रकार, स्पेक्ट्रोमीटर डेटा रिकॉर्ड करने के लिए पृथ्वी की सतह के विशिष्ट भागों पर केंद्रित होता है। स्पेक्ट्रल सामग्री डेटा के फायदों में वनस्पति, भौतिक स्थिति विश्लेषण, संभावित खनन के उद्देश्य से खनिज समानता, और महासागरों, तटीय क्षेत्रों और अंतर्देशीय जलमार्गों में प्रदूषित जल का आकलन सम्मलित है।
वर्णक्रम स्पेक्ट्रोमीटर पृथ्वी के अवलोकन के लिए आदर्श हैं चूकि वे व्यापक वर्णक्रमीय श्रेणियों को सक्षम रूप से मापते हैं। स्पेक्ट्रोमीटर को 400 NM से 2,500 NM तक की सीमा को कवर करने के लिए सेट किया जा सकता है, जो उन वैज्ञानिकों को रूचि देता है जो विमान और उपग्रह के माध्यम से पृथ्वी का निरीक्षण करने में सक्षम हैं। अधिकांश वैज्ञानिक अनुप्रयोगों के लिए वर्णक्रम स्पेक्ट्रोमीटर का वर्णक्रमीय विभेदन वांछनीय नहीं है; इस प्रकार, इसका उद्देश्य अधिक स्थानिक भिन्नता वाले क्षेत्रों की वर्णक्रमीय सामग्री को रिकॉर्ड करने के लिए विशिष्ट है।[3]
वीनस एक्सप्रेस, की परिक्रमा करते हुए, NIR-विज़-यूवी को कवर करने वाले कई इमेजिंग स्पेक्ट्रोमीटर थे।
प्रतिकूल परिस्थिति
प्रिज्म स्पेक्ट्रोमीटर के लेंसों का उपयोग समतलीकरण और पुनः इमेजिंग दोनों के लिए किया जाता है; चूकि, इमेजिंग स्पेक्ट्रोमीटर अपने प्रदर्शन में कोलिमेटर और री-इमेजर्स द्वारा प्रदान की गई इमेज गुणवत्ता द्वारा सीमित है। प्रत्येक तरंग दैर्ध्य पर स्लिट इमेज का संकल्प स्थानिक संकल्प को सीमित करता है; इसी तरह, प्रत्येक तरंग दैर्ध्य पर स्लिट इमेज में प्रकाशिकी का संकल्प वर्णक्रमीय संकल्प को सीमित करता है। इसके अतिरिक्त, प्रत्येक तरंग दैर्ध्य पर स्लिट इमेज का विरूपण वर्णक्रमीय डेटा की व्याख्या को जटिल बना सकता है।
इमेजिंग स्पेक्ट्रोमीटर में उपयोग किए जाने वाले अपवर्तक लेंस के अक्षीय कलरफुल परिवर्तन द्वारा प्रदर्शन को सीमित करते हैं। चूकि वे केंद्रबिन्दु में अंतर उत्पन्न करते हैं, जो अच्छे संकल्प को रोकते हैं; चूकि, यदि सीमा प्रतिबंधित है तो अच्छा रिज़ॉल्यूशन प्राप्त करना संभव है। इसके अतिरिक्त, पूर्ण दृश्यमान सीमा पर दो या दो से अधिक अपवर्तक सामग्रियों का उपयोग करके कलरफुल परिवर्तन को ठीक किया जा सकता है। आगे की ऑप्टिकल जटिलता के बिना व्यापक वर्णक्रमीय श्रेणियों में कलरफुल परिवर्तन को ठीक करना जटिल है।[3]
सिस्टम
बहुत व्यापक वर्णक्रमीय श्रेणियों के लिए लक्षित स्पेक्ट्रोमीटर सबसे अच्छे होते हैं यदि सभी दर्पण प्रणालियों के साथ बनाए जाते हैं। इन विशेष प्रणालियों में कोई कलरफुल परिवर्तन नहीं है, और यही कारण है कि वे बेहतर हैं। दूसरी ओर, सिंगल पॉइंट या लीनियर एरे डिटेक्शन सिस्टम वाले स्पेक्ट्रोमीटर को सरल मिरर सिस्टम की आवश्यकता होती है। क्षेत्र-सरणी संसूचकों का उपयोग करने वाले स्पेक्ट्रोमीटरों को अच्छा विभेदन प्रदान करने के लिए अधिक जटिल दर्पण प्रणालियों की आवश्यकता होती है। यह कल्पनीय है कि एक समापक बनाया जा सकता है जो सभी परिवर्तनों को रोकेगा; चूकि, यह डिज़ाइन महंगा है चूकि इसमें गोलाकार दर्पणों के उपयोग की आवश्यकता होती है।
छोटे दो-मिरर सिस्टम परिवर्तन को ठीक कर सकते हैं, परंतु वे इमेजिंग स्पेक्ट्रोमीटर के लिए अनुकूल नहीं हैं। तीन दर्पण प्रणालियाँ कॉम्पैक्ट और सही परिवर्तन भी हैं, परंतु उन्हें कम से कम दो एस्पेरिकल घटकों की आवश्यकता होती है। 4 से अधिक दर्पण वाले सिस्टम बड़े और बहुत अधिक जटिल होते हैं। परावर्ती सिस्टम इमेजिन स्पेक्ट्रोमीटर में उपयोग किए जाते हैं और कॉम्पैक्ट भी होते हैं; चूकि, कोलिमेटर या इमेजर दो घुमावदार दर्पणों और 3 अपवर्तक तत्वों से बना होगा, और इस प्रकार, प्रणाली बहुत जटिल है।
चूकि, ऑप्टिकल जटिलता प्रतिकूल है, चूकि प्रभाव सभी ऑप्टिकल सतहों और परावर्तनों को फैलाते हैं। प्रकीर्ण हुआ विकिरण डिटेक्टर में प्रवेश करके हस्तक्षेप कर सकता है और रिकॉर्ड किए गए स्पेक्ट्रा में त्रुटियां पैदा कर सकता है। स्ट्रे विकिरण को स्ट्रै लाइट कहा जाता है। प्रकीर्ण में योगदान देने वाली सतहों की कुल संख्या को सीमित करके, यह समीकरण प्रकाश की प्रारंभ को सीमित करता है।
इमेजिंग स्पेक्ट्रोमीटर अच्छी तरह से हल की गई इमेजिसों का उत्पादन करने के लिए हैं। ऐसा होने के लिए, इमेजिंग स्पेक्ट्रोमीटर को कुछ ऑप्टिकल सतहों के साथ बनाने की आवश्यकता होती है और इसमें कोई गोलाकार ऑप्टिकल सतह नहीं होती है।[3]
उदाहरण
- राल्फ (न्यू हराइज़नस), पर दृश्यमान और पराबैंगनी इमेजिंग स्पेक्ट्रोमीटर है।
- उल्लासपूर्ण अवरक्त ध्रुवीय ज्योति मैपर, जूनो (अंतरिक्ष यान) पर अवरक्त इमेजिंग स्पेक्ट्रोमीटर होता है।
- यूरोपा के लिए मैपिंग इमेजिंग स्पेक्ट्रोमीटर विकासात्मक यूरोपा क्लिपर अंतरिक्ष यान के लिए योजना बनाई गई है।
- मंगल ग्रह के लिए कॉम्पैक्ट आवीक्षण इमेजिंग स्पेक्ट्रोमी, मंगल टोही ऑर्बिटर पर मंगल की कक्षा में इमेजिंग स्पेक्ट्रोमीटर है।
- पृथ्वी के आयनमंडल और बाह्य वायुमंडल का निरीक्षण करने के लिए विशेष सेंसर अल्ट्रावायलेट लिम्ब इमेजर का उपयोग किया जाता है।
यह भी देखें
संदर्भ
- ↑ William L. Wolfe (1997). इमेजिंग स्पेक्ट्रोमीटर का परिचय. SPIE Press. ISBN 978-0-8194-2260-6.
- ↑ Freek D. van der Meer; S.M. de Jong (29 March 2011). Imaging Spectrometry: Basic Principles and Prospective Applications. Springer Science & Business Media. ISBN 978-1-4020-0194-9.
- ↑ 3.0 3.1 3.2 3.3 "गूगल पेटेंट". Retrieved 5 March 2012.