माध्य मुक्त पथ
भौतिक विज्ञान में माध्य मुक्त पथ वह औसत दूरी है जिस पर गतिमान कण (जैसे कि परमाणु, अणु, या फोटॉन) अपनी दिशा या ऊर्जा (या विशिष्ट संदर्भ में अन्य गुणों में) को बदलने से पहले यात्रा करता है सामान्यतः अन्य कणों के साथ या से अधिक निरंतर संघर्ष का परिणाम है।
प्रकीर्णन सिद्धांत
एक लक्ष्य के माध्यम से गोली मारने वाले कणों की किरण की कल्पना करें, और लक्ष्य के अत्यंत पतले स्लैब पर विचार करें (चित्र देखें)।[1] बीम कण को रोकने वाले परमाणु (या कण) लाल रंग में दिखाए जाते हैं। माध्य मुक्त पथ का परिमाण तंत्र की विशेषताओं पर निर्भर करता है। यह मानते हुए कि सभी लक्ष्य कण आराम पर हैं, किन्तु केवल बीम कण ही गतिमान है, जो माध्य मुक्त पथ के लिए अभिव्यक्ति देता है:
जहाँ ℓ माध्य मुक्त पथ है, n प्रति इकाई आयतन लक्ष्य कणों की संख्या है, और σ टक्कर के लिए प्रभावी क्रॉस सेक्शन (भौतिकी) या क्रॉस-अनुभागीय क्षेत्र है।
स्लैब का क्षेत्रफल L2 है और इसकी मात्रा L2 dx हैस्लैब में रुकने वाले परमाणुओं की विशिष्ट संख्या सांद्रता का n गुना आयतन अर्थात n L2 dx है। किसी किरण कण के उस स्लैब में रुकने की प्रायिकता, रोकने वाले परमाणुओं के कुल क्षेत्रफल को स्लैब के कुल क्षेत्रफल से विभाजित करने पर प्राप्त होती है:
जहाँ σ परमाणु का क्षेत्र (या अधिक औपचारिक रूप से प्रकीर्णन क्रॉस-सेक्शन) है।
बीम की तीव्रता में गिरावट आने वाली बीम की तीव्रता के समान होती है, जिसे स्लैब के अंदर कण के रुकने की संभावना से गुणा किया जाता है:
यह साधारण अंतर समीकरण है:
जिसके समाधान को बीयर-लैंबर्ट नियम के रूप में जाना जाता है और इसका रूप है, जहां x लक्ष्य के माध्यम से किरण द्वारा तय की गई दूरी है और I0 किरण की तीव्रता है लक्ष्य में प्रवेश करने से पहले; ℓ को माध्य मुक्त पथ कहा जाता है क्योंकि यह रुकने से पहले किरण कण द्वारा तय की गई माध्य दूरी के समान होता है। इसे देखने के लिए ध्यान दें कि x और x + dx के बीच एक कण के अवशोषित होने की प्रायिकता इस प्रकार दी गई है
इस प्रकार की अपेक्षा मूल्य (या औसत, या बस अर्थ ) x है
कणों का अंश जो स्लैब द्वारा रोका नहीं जाता (क्षीणन) संप्रेषण कहलाता है , जहाँ x स्लैब की मोटाई के समान है।
गैसों का गतिज सिद्धांत
गैसों के गतिज सिद्धांत में, एक कण का माध्य मुक्त पथ, जैसे कि एक अणु, वह औसत दूरी है जो कण अन्य गतिमान कणों के साथ संघर्ष के बीच तय करता है। उपरोक्त व्युत्पत्ति में लक्ष्य कणों को विश्राम अवस्था में माना गया है; इसलिए, वास्तव में, सूत्र यादृच्छिक स्थानों के साथ समान कणों के समूह के वेग के सापेक्ष उच्च गति के साथ एक बीम कण के लिए सूत्र रखता है। उस स्थिति में, लक्ष्य कणों की गति तुलनात्मक रूप से नगण्य होती है, इसलिए सापेक्ष वेग होता है।
यदि दूसरी ओर बीम कण समान कणों के साथ स्थापित संतुलन का भाग है, तो सापेक्ष वेग का वर्ग है:
संतुलन में, और यादृच्छिक और असंबद्ध हैं, इसलिए , और सापेक्ष गति है
इसका कारण यह है कि संघर्ष की संख्या स्थिर लक्ष्यों के साथ संघर्ष की संख्या का गुना है। इसलिए निम्नलिखित संबंध प्रयुक्त होता है[2]
और (आदर्श गैस नियम) और (त्रिज्या वाले गोलाकार कणों के लिए प्रभावी क्रॉस-अनुभागीय क्षेत्र), यह दिखाया जा सकता है कि माध्य मुक्त पथ है[3]
जहां kB बोल्ट्जमैन स्थिरांक है,इसमें गैस का दबाव है और परम तापमान है।
वास्तव में गैस के अणुओं का व्यास ठीक से परिभाषित नहीं है। वास्तव में अणु के गतिज व्यास को माध्य मुक्त पथ के रूप में परिभाषित किया जाता है। सामान्यतः गैस के अणु कठोर गोले की तरह व्यव्हार नहीं करते हैं, किन्तु बड़ी दूरी पर दूसरे को आकर्षित करते हैं और कम दूरी पर दूसरे को पीछे हटाते हैं, जैसा कि लेनार्ड-जोन्स क्षमता के साथ वर्णित किया जा सकता है। ऐसे नरम अणुओं से सुधार कि विधि/प्रणाली व्यास के रूप में लेनार्ड-जोन्स σ पैरामीटर का उपयोग करना है।
एक अन्य विधि/प्रणाली यह है कि कठोर गोले वाली गैस की कल्पना की जाए जिसमें वास्तविक गैस के समान गतिशील श्यानता हो। यह औसत मुक्त मार्ग की ओर जाता है [4]
जहाँ आणविक द्रव्यमान है और आदर्श गैस का घनत्व है, और μ गतिशील श्यानता है। इस अभिव्यक्ति को निम्नलिखित सुविधाजनक रूप में रखा जा सकता है
विशिष्ट गैस स्थिरांक के साथ, हवा के लिए 287 जे/(किलो*के) के समान है ।।
निम्न तालिका कमरे के तापमान पर विभिन्न दबावों पर हवा के कुछ विशिष्ट मानो को सूचीबद्ध करती है। ध्यान दें कि आणविक व्यास की अलग-अलग परिभाषाएँ, साथ ही वायुमंडलीय दबाव (100 बनाम 101.3 केपीए) और कमरे के तापमान (293.17 K बनाम 296.15 K या 300 K) के मान के बारे में अलग-अलग धारणाएँ, माध्य मुक्त पथ के थोड़े अलग मूल्यों को जन्म दे सकती हैं। ।
निर्वात सीमा | एचपीए में दबाव (एमबार) | एमएमएचजी में दबाव (टोर) | संख्या घनत्व (अणु / सेमी3) | संख्या घनत्व (अणु/एम3) | अर्थात मुक्त पथ |
---|---|---|---|---|---|
व्यापक दवाब | 1013 | 759.8 | 2.7 × 1019 | 2.7 × 1025 | 64 – 68 nm[5] |
कम निर्वात | 300 – 1 | 220 – 8×10−1 | 1019 – 1016 | 1025 – 1022 | 0.1 – 100 μm |
मध्यम निर्वात | 1 – 10−3 | 8×10−1 – 8×10−4 | 1016 – 1013 | 1022 – 1019 | 0.1 – 100 mm |
उच्च निर्वात | 10−3 – 10−7 | 8×10−4 – 8×10−8 | 1013 – 109 | 1019 – 1015 | 10 cm – 1 km |
अति उच्च निर्वात | 10−7 – 10−12 | 8×10−8 – 8×10−13 | 109 – 104 | 1015 – 1010 | 1 km – 105 km |
अत्यधिक उच्च निर्वात | <10−12 | <8×10−13 | <104 | <1010 | >105 km |
अन्य क्षेत्रों में
रेडियोग्राफी
गामा-रे रेडियोग्राफ़ में मोनो-ऊर्जावान फोटॉनों के पेंसिल बीम का औसत मुक्त पथ वह औसत दूरी है जो फोटॉन लक्ष्य पदार्थ के परमाणुओं के साथ संघर्ष के बीच यात्रा करता है। यह पदार्थ और फोटॉन की ऊर्जा पर निर्भर करता है:
जहां μ रैखिक क्षीणन गुणांक है, μ/ρ द्रव्यमान क्षीणन गुणांक है और ρ पदार्थ का घनत्व है। बड़े मापदंड पर क्षीणन गुणांक को राष्ट्रीय मानक और प्रौद्योगिकी संस्थान (एनआईएसटी) डेटाबेस का उपयोग करके किसी भी पदार्थ और ऊर्जा संयोजन के लिए देखा या गणना की जा सकती है।[7][8]
एक्स-रे रेडियोग्राफी में औसत मुक्त पथ की गणना अधिक जटिल होती है, क्योंकि फोटॉन मोनो-ऊर्जावान नहीं होते हैं, किन्तु ऊर्जा का कुछ आवृत्ति वितरण होता है जिसे स्पेक्ट्रम कहा जाता है। चूंकि फोटॉन लक्षित पदार्थ के माध्यम से आगे बढ़ते हैं, वे अपनी ऊर्जा के आधार पर संभावनाओं के साथ क्षीणन होते हैं, परिणामस्वरूप उनके वितरण में प्रक्रिया में परिवर्तन होता है जिसे स्पेक्ट्रम सख्त कहा जाता है। स्पेक्ट्रम सख्त होने के कारण, एक्स-रे स्पेक्ट्रम का माध्य मुक्त पथ दूरी के साथ बदलता है।
कभी-कभी कोई पदार्थ की मोटाई को औसत मुक्त पथों की संख्या में मापता है। माध्य मुक्त पथ की मोटाई वाली पदार्थ 37% (1/e (गणितीय स्थिरांक)) फोटॉन तक क्षीण हो जाएगी। यह अवधारणा अर्ध-मूल्य परत (एचवीएल) से निकटता से संबंधित है: एचवीएल की मोटाई वाली पदार्थ 50% फोटॉन को क्षीण कर देगी। मानक एक्स-रे छवि संचरण छवि है, इसकी तीव्रता के नकारात्मक लघुगणक वाली छवि को कभी-कभी कई माध्य मुक्त पथ छवि कहा जाता है।
इलेक्ट्रॉनिक्स
मैक्रोस्कोपिक आवेश ट्रांसपोर्ट में, धातु में आवेश वाहक का औसत मुक्त पथ विद्युत गतिशीलता के समानुपाती होता है, जो सीधे विद्युत चालकता से संबंधित होता है:
जहां q आवेश है औसत खाली समय है, m* प्रभावी द्रव्यमान है, और vF आवेश वाहक का फर्मी वेग है। फर्मी वेग को गैर-सापेक्षतावादी गतिज ऊर्जा समीकरण के माध्यम से फर्मी ऊर्जा से आसानी से प्राप्त किया जा सकता है। चूंकि पतली फिल्मों में फिल्म की मोटाई अनुमानित औसत मुक्त पथ से छोटी हो सकती है, जिससे सतह का बिखराव अधिक ध्यान देने योग्य हो जाता है, जिससे प्रभावी रूप से प्रतिरोधकता बढ़ जाती है।
इलेक्ट्रॉनों के औसत मुक्त पथ से छोटे आयाम वाले माध्यम के माध्यम से इलेक्ट्रॉन गतिशीलता बैलिस्टिक चालन या बैलिस्टिक परिवहन के माध्यम से होती है। ऐसे परिदृश्यों में चालक की दीवारों के साथ संघर्ष में ही इलेक्ट्रॉन अपनी गति बदलते हैं।
प्रकाशिकी
यदि कोई आयतन अंश Φ के साथ व्यास d के गैर-प्रकाश-अवशोषित कणों का निलंबन लेता है, तो फोटॉन का माध्य मुक्त पथ है:[9]
जहां Qs प्रकीर्णन की दक्षता कारक है। Qs मी सिद्धांत का उपयोग करके गोलाकार कणों के लिए संख्यात्मक रूप से मूल्यांकन किया जा सकता है।
ध्वनिकी
अन्यथा खाली गुहा में, दीवारों से उछलते हुए कण का औसत मुक्त मार्ग है:
जहाँ V गुहा का आयतन है, S गुहा का कुल आंतरिक सतह क्षेत्र है, और F गुहा के आकार से संबंधित स्थिरांक है। अधिकांश सरल गुहा आकृतियों के लिए, F लगभग 4 है।[10]
ध्वनि प्रसार के ज्यामितीय सन्निकटन का उपयोग करते हुए, ध्वनिक में पुनर्संयोजन की व्युत्पत्ति में इस संबंध का उपयोग किया जाता है।[11]
परमाणु और कण भौतिकी
कण भौतिकी में औसत मुक्त पथ की अवधारणा का सामान्यतः उपयोग नहीं किया जाता है जिसे क्षीणन लंबाई की समान अवधारणा द्वारा प्रतिस्थापित किया जाता है। विशेष रूप से, उच्च-ऊर्जा फोटॉनों के लिए जो अधिकतर इलेक्ट्रॉन-पॉज़िट्रॉन जोड़ी उत्पादन द्वारा परस्पर क्रिया करते हैं, विकिरण लंबाई का उपयोग रेडियोग्राफी में औसत मुक्त पथ की तरह किया जाता है।
परमाणु भौतिकी में स्वतंत्र-कण मॉडल को अन्य नाभिकों के साथ परस्परिक क्रिया करने से पहले परमाणु नाभिक के अंदर नाभिकों की अबाधित परिक्रमा की आवश्यकता होती है।[12]
स्वतंत्र कण मॉडल के उपयोग की अनुमति देने के लिए परमाणु पदार्थ में न्यूक्लियॉन का प्रभावी माध्य मुक्त पथ परमाणु आयामों से कुछ सीमा तक बड़ा होना चाहिए। यह आवश्यकता सिद्धांत में की गई धारणाओं के विपरीत प्रतीत होती है... हम यहां परमाणु संरचना भौतिकी की मूलभूत समस्याओं में से एक का सामना कर रहे हैं जिसे अभी तक हल नहीं किया जा सका है।
— John Markus Blatt and Victor Weisskopf, Theoretical nuclear physics (1952)[13]
यह भी देखें
- प्रकीर्णन सिद्धांत
- बैलिस्टिक चालन
- निर्वात
- नुडसन संख्या
- प्रकाशिकी
संदर्भ
- ↑ Chen, Frank F. (1984). प्लाज्मा भौतिकी और नियंत्रित संलयन का परिचय (1st ed.). Plenum Press. p. 156. ISBN 0-306-41332-9.
- ↑ S. Chapman and T. G. Cowling, The mathematical theory of non-uniform gases, 3rd. edition, Cambridge University Press, 1990, ISBN 0-521-40844-X, p. 88.
- ↑ "मीन मुक्त पथ, आणविक टकराव". Hyperphysics.phy-astr.gsu.edu. Retrieved 2011-11-08.
- ↑ Vincenti, W. G. and Kruger, C. H. (1965). भौतिक गैस गतिकी का परिचय. Krieger Publishing Company. p. 414.
{{cite book}}
: CS1 maint: multiple names: authors list (link) - ↑ Jennings, S (1988). "The mean free path in air". Journal of Aerosol Science. 19 (2): 159. Bibcode:1988JAerS..19..159J. doi:10.1016/0021-8502(88)90219-4.
- ↑ Based on data from "NIST: Note - X-Ray Form Factor and Attenuation Databases". Physics.nist.gov. 1998-03-10. Retrieved 2011-11-08.
- ↑ Hubbell, J. H.; Seltzer, S. M. "Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients". National Institute of Standards and Technology. Retrieved 19 September 2007.
- ↑ Berger, M. J.; Hubbell, J. H.; Seltzer, S. M.; Chang, J.; Coursey, J. S.; Sukumar, R.; Zucker, D. S. "XCOM: Photon Cross Sections Database". National Institute of Standards and Technology (NIST). Retrieved 19 September 2007.
- ↑ Mengual, O.; Meunier, G.; Cayré, I.; Puech, K.; Snabre, P. (1999). "TURBISCAN MA 2000: multiple light scattering measurement for concentrated emulsion and suspension instability analysis". Talanta. 50 (2): 445–56. doi:10.1016/S0039-9140(99)00129-0. PMID 18967735.
- ↑ Young, Robert W. (July 1959). "सबाइन पुनर्संयोजन समीकरण और ध्वनि शक्ति गणना". The Journal of the Acoustical Society of America. 31 (7): 918. Bibcode:1959ASAJ...31..912Y. doi:10.1121/1.1907816.
- ↑ Davis, D. and Patronis, E. "Sound System Engineering" (1997) Focal Press, ISBN 0-240-80305-1 p. 173.
- ↑ Cook, Norman D. (2010). "The Mean Free Path of Nucleons in Nuclei". परमाणु नाभिक के मॉडल (2 ed.). Heidelberg: Springer. p. 324. ISBN 978-3-642-14736-4.
- ↑ Blatt, John M.; Weisskopf, Victor F. (1979). Theoretical Nuclear Physics (in British English). doi:10.1007/978-1-4612-9959-2. ISBN 978-1-4612-9961-5.
बाहरी संबंध
- Gas Dynamics Toolbox: Calculate mean free path for mixtures of gases using VHS model