आयतन श्यानता

From Vigyanwiki
Revision as of 11:12, 16 May 2023 by alpha>Indicwiki (Created page with "आयतन श्यानता (जिसे बल्क श्यानता या तनुकरण श्यानता भी कहा जाता है) ए...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

आयतन श्यानता (जिसे बल्क श्यानता या तनुकरण श्यानता भी कहा जाता है) एक भौतिक गुण है जो द्रव प्रवाह की विशेषता के लिए प्रासंगिक है। सामान्य प्रतीक हैं या . इसके आयाम हैं (द्रव्यमान / (लंबाई × समय)), और इकाइयों की संबंधित अंतर्राष्ट्रीय प्रणाली इकाई पास्कल (इकाई)-सेकंड (Pa·s) है।

अन्य भौतिक गुणों (जैसे घनत्व, कतरनी चिपचिपाहट, और तापीय चालकता) की तरह मात्रा चिपचिपाहट का मूल्य प्रत्येक द्रव के लिए विशिष्ट होता है और अतिरिक्त रूप से द्रव अवस्था पर निर्भर करता है, विशेष रूप से इसका तापमान और दबाव। शारीरिक रूप से, वॉल्यूम विस्कोसिटी तरल पदार्थ के संपीड़न या विस्तार के लिए, आइसेंट्रोपिक थोक मापांक के कारण होने वाले प्रतिवर्ती प्रतिरोध के ऊपर और ऊपर अपरिवर्तनीय प्रतिरोध का प्रतिनिधित्व करता है।[1]आणविक स्तर पर, यह आणविक गति की स्वतंत्रता की घूर्णी और कंपन डिग्री के बीच वितरित होने वाली प्रणाली में इंजेक्ट की गई ऊर्जा के लिए आवश्यक परिमित समय से उपजा है।[2]

बहुपरमाणुक गैसों में ध्वनि क्षीणन (जैसे स्टोक्स का नियम), सदमे की लहरें का प्रसार, और गैस के बुलबुले वाले तरल पदार्थों की गतिशीलता सहित विभिन्न प्रकार की तरल पदार्थ की घटनाओं को समझने के लिए वॉल्यूम विस्कोसिटी का ज्ञान महत्वपूर्ण है। हालाँकि, कई द्रव गतिकी समस्याओं में, इसके प्रभाव की उपेक्षा की जा सकती है। उदाहरण के लिए, यह कम घनत्व पर एक एकपरमाणुक गैस में 0 है, जबकि एक असम्पीडित प्रवाह में आयतन चिपचिपाहट बहुत अधिक है क्योंकि यह गति के समीकरण में प्रकट नहीं होता है।[3] वॉल्यूम विस्कोसिटी को 1879 में होरेस लैम्ब ने अपने प्रसिद्ध कार्य हाइड्रोडायनामिक्स में पेश किया था।[4] यद्यपि बड़े पैमाने पर वैज्ञानिक साहित्य में अपेक्षाकृत अस्पष्ट है, द्रव यांत्रिकी पर कई महत्वपूर्ण कार्यों में मात्रा चिपचिपाहट पर गहराई से चर्चा की गई है,[1][5][6] द्रव ध्वनिकी,[7][8][9][2] तरल पदार्थ का सिद्धांत,[10][11] और रियोलॉजी।[12]


व्युत्पत्ति और उपयोग

उष्मागतिक संतुलन पर, कॉची तनाव टेन्सर के ट्रेस (रैखिक बीजगणित) का ऋणात्मक-एक तिहाई अक्सर ऊष्मप्रवैगिक दबाव के साथ पहचाना जाता है,

जो तापमान और घनत्व (राज्य के समीकरण) जैसे संतुलन राज्य चर पर ही निर्भर करता है। सामान्य तौर पर, तनाव टेन्सर का पता थर्मोडायनामिक दबाव योगदान और एक अन्य योगदान का योग होता है जो वेग क्षेत्र के विचलन के समानुपाती होता है। आनुपातिकता के इस गुणांक को वॉल्यूम विस्कोसिटी कहा जाता है। आयतन श्यानता के सामान्य प्रतीक हैं और .

वॉल्यूम विस्कोसिटी क्लासिक नेवियर स्टोक्स समीकरण में प्रकट होती है यदि इसे संपीड़ित द्रव के लिए लिखा जाता है, जैसा कि सामान्य हाइड्रोडायनामिक्स पर अधिकांश पुस्तकों में वर्णित है।[5][1] और ध्वनिकी।[8][9]

कहाँ कतरनी चिपचिपापन गुणांक है और मात्रा चिपचिपापन गुणांक है। पैरामीटर और मूल रूप से क्रमशः प्रथम और थोक श्यानता गुणांक कहलाते थे। परिचालक नेवियर-स्टोक्स समीकरणों की व्युत्पत्ति# सामग्री व्युत्पन्न है। टेंसर्स (मैट्रिसेस) का परिचय देकर , और , जो क्रमशः अपरिष्कृत कतरनी प्रवाह, शुद्ध कतरनी प्रवाह और संपीड़न प्रवाह का वर्णन करता है,

क्लासिक नेवियर-स्टोक्स समीकरण को स्पष्ट रूप मिलता है।

ध्यान दें कि संवेग समीकरण में शब्द जिसमें वॉल्यूम चिपचिपाहट होती है, एक असंपीड़ित द्रव के लिए गायब हो जाता है क्योंकि प्रवाह का विचलन 0 के बराबर होता है।

ऐसे मामले हैं जहां , जिनका विवरण नीचे दिया गया है। सामान्य तौर पर, इसके अलावा, क्लासिक थर्मोडायनामिक अर्थों में तरल पदार्थ की संपत्ति ही नहीं है, बल्कि प्रक्रिया पर भी निर्भर करती है, उदाहरण के लिए संपीड़न/विस्तार दर। कतरनी चिपचिपाहट के लिए भी यही है। न्यूटोनियन द्रव पदार्थ के लिए कतरनी चिपचिपाहट एक शुद्ध द्रव गुण है, लेकिन गैर-न्यूटोनियन तरल पदार्थ के लिए यह वेग प्रवणता पर निर्भरता के कारण शुद्ध द्रव गुण नहीं है। न तो कतरनी और न ही आयतन चिपचिपापन संतुलन पैरामीटर या गुण हैं, लेकिन परिवहन गुण हैं। वेग ढाल और/या संपीड़न दर इसलिए दबाव, तापमान और अन्य राज्य चर के साथ स्वतंत्र चर हैं।

लैंडौ की व्याख्या

लेव लैंडौ के अनुसार,[1]

In compression or expansion, as in any rapid change of state, the fluid ceases to be in thermodynamic equilibrium, and internal processes are set up in it which tend to restore this equilibrium. These processes are usually so rapid (i.e. their relaxation time is so short) that the restoration of equilibrium follows the change in volume almost immediately unless, of course, the rate of change of volume is very large.

वह बाद में जोड़ता है:

It may happen, nevertheless, that the relaxation times of the processes of restoration of equilibrium are long, i.e. they take place comparatively slowly.

एक उदाहरण के बाद, उन्होंने निष्कर्ष निकाला (के साथ वॉल्यूम चिपचिपाहट का प्रतिनिधित्व करने के लिए प्रयोग किया जाता है):

Hence, if the relaxation time of these processes is long, a considerable dissipation of energy occurs when the fluid is compressed or expanded, and, since this dissipation must be determined by the second viscosity, we reach the conclusion that is large.

नाप

दुखिन और गोएत्ज़ में तरल पदार्थों की चिपचिपाहट की मात्रा को मापने के लिए उपलब्ध तकनीकों की एक संक्षिप्त समीक्षा पाई जा सकती है।[9]और शर्मा (2019)।[13]ऐसी ही एक विधि ध्वनिक रियोमीटर का उपयोग कर रही है।

नीचे 25 °C पर कई न्यूटोनियन तरल पदार्थों के आयतन श्यानता के मान दिए गए हैं (centipoise|cP में रिपोर्ट किया गया है):[14] मेथनॉल - 0.8

इथेनॉल - 1.4
प्रोपेनोल - 2.7
पेंटेनॉल - 2.8
एसीटोन - 1.4
टोल्यूनि - 7.6
साइक्लोहेक्सानोन - 7.0
हेक्सेन - 2.4

हाल के अध्ययनों ने कार्बन डाईऑक्साइड , मीथेन और नाइट्रस ऑक्साइड सहित विभिन्न प्रकार की गैसों के लिए आयतन चिपचिपाहट निर्धारित की है। इनमें आयतन श्यानता पाई गई जो उनकी अपरूपण श्यानता से सैकड़ों से हज़ार गुना बड़ी थी।[13]बड़ी मात्रा में श्यानता वाले तरल पदार्थों में गैर-जीवाश्म ईंधन ताप स्रोत, पवन सुरंग परीक्षण और फार्मास्युटिकल प्रसंस्करण वाले बिजली प्रणालियों में काम करने वाले तरल पदार्थ के रूप में उपयोग किए जाने वाले तरल पदार्थ शामिल हैं।

मॉडलिंग

वॉल्यूम विस्कोसिटी के संख्यात्मक मॉडलिंग के लिए समर्पित कई प्रकाशन हैं। इन अध्ययनों की विस्तृत समीक्षा शर्मा (2019) में देखी जा सकती है।[13] और क्रैमर।[15] बाद के अध्ययन में, कई सामान्य तरल पदार्थों में बल्क चिपचिपाहट पाई गई जो उनकी कतरनी चिपचिपाहट से सैकड़ों से हजारों गुना बड़ी थी।

संदर्भ

  1. 1.0 1.1 1.2 1.3 Landau, L.D. and Lifshitz, E.M. "Fluid mechanics", Pergamon Press, New York (1959)
  2. 2.0 2.1 Temkin, S., "Elements of Acoustics", John Wiley and Sons, NY (1981)
  3. Bird, R. Byron; Stewart, Warren E.; Lightfoot, Edwin N. (2007), Transport Phenomena (2nd ed.), John Wiley & Sons, Inc., p. 19, ISBN 978-0-470-11539-8
  4. Lamb, H., "Hydrodynamics", Sixth Edition,Dover Publications, NY (1932)
  5. 5.0 5.1 Happel, J. and Brenner , H. "Low Reynolds number hydrodynamics", Prentice-Hall, (1965)
  6. Potter, M.C., Wiggert, D.C. "Mechaniscs of Fluids", Prentics Hall, NJ (1997)
  7. Morse, P.M. and Ingard, K.U. "Theoretical Acoustics", Princeton University Press(1968)
  8. 8.0 8.1 Litovitz, T.A. and Davis, C.M. In "Physical Acoustics", Ed. W.P.Mason, vol. 2, chapter 5, Academic Press, NY, (1964)
  9. 9.0 9.1 9.2 Dukhin, A. S. and Goetz, P. J. Characterization of liquids, nano- and micro- particulates and porous bodies using Ultrasound, Elsevier, 2017 ISBN 978-0-444-63908-0
  10. Kirkwood, J.G., Buff, F.P., Green, M.S., "The statistical mechanical theory of transport processes. 3. The coefficients of shear and bulk viscosity in liquids", J. Chemical Physics, 17, 10, 988-994, (1949)
  11. Enskog, D. "Kungliga Svenska Vetenskapsakademiens Handlingar", 63, 4, (1922)
  12. Graves, R.E. and Argrow, B.M. "Bulk viscosity: Past to Present", Journal of Thermophysics and Heat Transfer,13, 3, 337–342 (1999)
  13. 13.0 13.1 13.2 Sharma, B and Kumar, R "Estimation of bulk viscosity of dilute gases using a nonequilibrium molecular dynamics approach.", Physical Review E,100, 013309 (2019)
  14. Dukhin, Andrei S.; Goetz, Philip J. (2009). "ध्वनिक स्पेक्ट्रोस्कोपी का उपयोग करके थोक चिपचिपाहट और संपीड्यता माप". The Journal of Chemical Physics. 130 (12): 124519. Bibcode:2009JChPh.130l4519D. doi:10.1063/1.3095471. ISSN 0021-9606. PMID 19334863.
  15. Cramer, M.S. "Numerical estimates for the bulk viscosity of ideal gases.", Phys. Fluids,24, 066102 (2012)