टाइम-इनवेरिएंट सिस्टम

From Vigyanwiki
Revision as of 22:33, 25 October 2022 by alpha>Amreensaif
एक नियतात्मक निरंतर-समय एकल-इनपुट एकल-आउटपुट सिस्टम के लिए समय के परिवर्तन को दर्शाने वाला ब्लॉक आरेख। सिस्टम समय-अपरिवर्तनीय है यदि और केवल यदि हमेशा के लिए , सभी वास्तविक स्थिरांक के लिए और सभी इनपुट के लिए .[1][2][3] छवि को विस्तृत करने के लिए उस पर क्लिक करें।

नियंत्रण सिद्धांत में एक समय-अपरिवर्तनीय (TIV) प्रणाली के अंतर्गत एक समय-निर्भर फलन होता है जो कि समय का प्रत्यक्ष फलन नहीं होता है। प्रणालीय विश्लेषण के क्षेत्र में ऐसी प्रणालियों को प्रणालियों कि एक श्रेणी माना जाता है। समय-निर्भर प्रणाली फलन समय-निर्भर आगत फलन का एक फलन है। यदि यह फलन मात्र अप्रत्यक्ष रूप से समय-अनुक्षेत्र (उदहारण के रूप में आगत फलन द्वारा) पर निर्भर होता है तो यह प्रणाली एक ऐसी प्रणाली होगी जो समय-अपरिवर्तनीय मानी जा सकती है। इसके विपरीत, समय-अनुक्षेत्र पर प्रत्यक्ष निर्भरता होने पर प्रणालीय फलन को "समय-परिवर्ती प्रणाली" माना जा सकता है।

गणितीय रूप से कहा जाए तो, एक प्रणाली का "समय-अपरिवर्तनीय" होना निम्नलिखित गुण है:[4]: p. 50 

समय-निर्भर आउटपुट फ़ंक्शन वाले सिस्टम को देखते हुए और एक समय-निर्भर इनपुट फ़ंक्शन इनपुट पर समय-विलंब होने पर सिस्टम को समय-अपरिवर्तनीय माना जाएगा सीधे आउटपुट के समय-विलंब के बराबर होता है समारोह। उदाहरण के लिए, यदि समय बीता हुआ समय है, तो समय-अपरिवर्तनीय का तात्पर्य है कि इनपुट फ़ंक्शन के बीच संबंध और आउटपुट फ़ंक्शन समय के संबंध में स्थिर है :
संकेत का प्रक्रमण की भाषा में, इस संपत्ति को संतुष्ट किया जा सकता है यदि सिस्टम का स्थानांतरण प्रकार्य इनपुट और आउटपुट द्वारा व्यक्त किए जाने के अलावा समय का प्रत्यक्ष कार्य नहीं है।

एक प्रणाली योजनाबद्ध के संदर्भ में, इस संपत्ति को निम्नानुसार भी कहा जा सकता है, जैसा कि चित्र में दाईं ओर दिखाया गया है:

यदि कोई सिस्टम समय-अपरिवर्तनीय है तो सिस्टम मनमाने ढंग से विलंब के साथ विनिमेय को ब्लॉक करता है।

यदि एक समय-अपरिवर्तनीय प्रणाली भी रैखिक प्रणाली है, तो यह एनएमआर स्पेक्ट्रोस्कोपी , भूकंप विज्ञान , विद्युत नेटवर्क , सिग्नल प्रोसेसिंग, नियंत्रण सिद्धांत और अन्य तकनीकी क्षेत्रों में प्रत्यक्ष अनुप्रयोगों के साथ रैखिक समय-अपरिवर्तनीय सिद्धांत (रैखिक समय-अपरिवर्तनीय) का विषय है। नॉनलाइनियर सिस्टम समय-संस्करण प्रणाली में एक व्यापक, शासी सिद्धांत का अभाव है। असतत समय संकेत टाइम-इनवेरिएंट सिस्टम को शिफ्ट-अपरिवर्तनीय प्रणाली के रूप में जाना जाता है। जिन प्रणालियों में समय-अपरिवर्तनीय संपत्ति की कमी होती है, उनका अध्ययन समय-भिन्न प्रणालियों के रूप में किया जाता है।

सरल उदाहरण

यह प्रदर्शित करने के लिए कि कैसे यह निर्धारित किया जाए कि कोई सिस्टम समय-अपरिवर्तनीय है या नहीं, दो प्रणालियों पर विचार करें:

  • सिस्टम ए:
  • सिस्टम बी:

सिस्टम फंक्शन के बाद से सिस्टम ए के लिए स्पष्ट रूप से टी के बाहर पर निर्भर करता है , यह समय-अपरिवर्तनीय नहीं है क्योंकि समय-निर्भरता स्पष्ट रूप से इनपुट फ़ंक्शन का कार्य नहीं है।

इसके विपरीत, सिस्टम बी की समय-निर्भरता केवल समय-भिन्न इनपुट का एक कार्य है . यह सिस्टम बी को समय-अपरिवर्तनीय बनाता है।

नीचे दिया गया औपचारिक उदाहरण अधिक विस्तार से दिखाता है कि सिस्टम बी समय के एक कार्य के रूप में एक शिफ्ट-इनवेरिएंट सिस्टम है, जबकि सिस्टम ए नहीं है।

औपचारिक उदाहरण

सिस्टम ए और बी ऊपर भिन्न क्यों हैं इसका एक अधिक औपचारिक प्रमाण अब प्रस्तुत किया गया है। इस प्रमाण को करने के लिए दूसरी परिभाषा का उपयोग किया जाएगा।

सिस्टम ए: इनपुट की देरी से शुरू करें
अब आउटपुट में देरी करें
स्पष्ट रूप से , इसलिए प्रणाली समय-अपरिवर्तनीय नहीं है।
सिस्टम बी: इनपुट की देरी से शुरू करें
अब आउटपुट में देरी करें
स्पष्ट रूप से , इसलिए प्रणाली समय-अपरिवर्तनीय है।

अधिक सामान्यतः, इनपुट और आउटपुट के बीच संबंध है

और समय के साथ इसकी भिन्नता है

समय-अपरिवर्तनीय प्रणालियों के लिए, सिस्टम गुण समय के साथ स्थिर रहते हैं,

ऊपर सिस्टम ए और बी पर लागू:
सामान्य तौर पर, इसलिए यह समय-अपरिवर्तनीय नहीं है,
तो यह समय-अपरिवर्तनीय है।

सार उदाहरण

हम शिफ्ट ऑपरेटर को द्वारा निरूपित कर सकते हैं कहाँ पे वह राशि है जिसके द्वारा एक वेक्टर के पैरामीटर को स्थानांतरित किया जाना चाहिए। उदाहरण के लिए, एडवांस-बाय-1 सिस्टम

इस अमूर्त संकेतन में प्रतिनिधित्व किया जा सकता है

कहाँ पे द्वारा दिया गया एक फ़ंक्शन है

स्थानांतरित आउटपुट देने वाली प्रणाली के साथ

इसलिए एक ऑपरेटर है जो इनपुट वेक्टर को 1 से आगे बढ़ाता है।

मान लीजिए कि हम एक ऑपरेटर (गणित) द्वारा एक प्रणाली का प्रतिनिधित्व करते हैं . यह प्रणाली समय-अपरिवर्तनीय है यदि यह शिफ्ट ऑपरेटर के साथ कम्यूटेटिव ऑपरेशन करती है, यानी,

यदि हमारा सिस्टम समीकरण द्वारा दिया गया है

तो यह समय-अपरिवर्तनीय है यदि हम सिस्टम ऑपरेटर को लागू कर सकते हैं पर उसके बाद शिफ्ट ऑपरेटर , या हम शिफ्ट ऑपरेटर लागू कर सकते हैं सिस्टम ऑपरेटर द्वारा पीछा किया गया , दो संगणनाओं के साथ समान परिणाम प्राप्त होते हैं।

सिस्टम ऑपरेटर को लागू करने से पहले देता है

शिफ्ट ऑपरेटर लगाने से पहले देता है

यदि सिस्टम समय-अपरिवर्तनीय है, तो


यह भी देखें

संदर्भ

  1. Bessai, Horst J. (2005). MIMO Signals and Systems. Springer. p. 28. ISBN 0-387-23488-8.
  2. Sundararajan, D. (2008). A Practical Approach to Signals and Systems. Wiley. p. 81. ISBN 978-0-470-82353-8.
  3. Roberts, Michael J. (2018). Signals and Systems: Analysis Using Transform Methods and MATLAB® (3 ed.). McGraw-Hill. p. 132. ISBN 978-0-07-802812-0.
  4. Oppenheim, Alan; Willsky, Alan (1997). Signals and Systems (second ed.). Prentice Hall.



==