परासरणी दवाब
This article's lead section contains information that is not included elsewhere in the article. (December 2022) (Learn how and when to remove this template message) |
This article needs additional citations for verification. (December 2022) (Learn how and when to remove this template message) |
परासरणीय दाब वह न्यूनतम दाब है जिसे एक अर्धपारगम्य झिल्ली में इसके शुद्ध विलायक के आवक प्रवाह को रोकने के लिए किसी विलयन पर लागू करने की आवश्यकता होती है।[1]
इसे परासरण द्वारा अपने शुद्ध विलायक को ग्रहण करने की विलयन की प्रवृत्ति के माप के रूप में भी परिभाषित किया गया है। संभावित परासरणीय दाब अधिकतम परासरणीय दाब है जो किसी घोल में विकसित हो सकता है यदि इसे अर्धपारगम्य झिल्ली द्वारा इसके शुद्ध विलायक से अलग किया जाए।
परासरण तब होता है जब विलेय की विभिन्न सांद्रता वाले दो विलयनों को एक चयनात्मक पारगम्य झिल्ली द्वारा अलग किया जाता है। विलायक अणु कम सांद्रता वाले घोल से उच्च विलेय सांद्रता वाले घोल में झिल्ली के माध्यम से अधिमानतः गुजरते हैं। विलायक अणुओं का स्थानांतरण तब तक जारी रहेगा जब तक संतुलन प्राप्त नहीं हो जाता।[1][2]
सिद्धांत और माप
जेकोबस वैन टी हॉफ ने परासरणीय दाब और विलेय सांद्रता के बीच एक मात्रात्मक संबंध पाया, जिसे निम्नलिखित समीकरण में व्यक्त किया गया है:
जहाँ Π\Pi परासरणीय दाब है, i आयामहीन वैन 'टी हॉफ सूचकांक है, c विलेय की मोलर सांद्रता है, R आदर्श गैस स्थिरांक है, और T पूर्ण तापमान है (प्रायः केल्विन में)। यह सूत्र तब लागू होता है जब विलेय की सांद्रता इतनी कम हो कि घोल को एक आदर्श घोल माना जा सके। सांद्रता की आनुपातिकता का अर्थ है कि परासरणीय दाब एक सहसंयोजक गुण है।। प्रपत्र में इस सूत्र की समानता आदर्श गैस नियम से करने पर कहाँ n आयतन V में गैस अणुओं के मोल्स की कुल संख्या है, और n/V गैस अणुओं की मोलर सांद्रता है।गैस अणुओं की सांद्रता. हार्मन नॉर्थ्रॉप मोर्स और फ्रेज़र ने दिखाया कि समीकरण अधिक संकेंद्रित विलयनों पर लागू होता है यदि सांद्रता की इकाई मोल के बजाय मोलल होती है[3] इसलिए जब मोललता का उपयोग किया जाता है तो इस समीकरण को मोर्स समीकरण कहा जाता है
अधिक सांद्रता वाले विलयनों के लिए वैन टी हॉफ समीकरण को विलेय सांद्रताc में घातीय श्रृंखला के रूप में बढ़ाया जा सकता है। पहले सन्निकटन के लिए,
जहाँ आदर्श दबाव है और A एक अनुभवजन्य पैमाना है। पैमाना A का मान (और उच्च-क्रम सन्निकटन से पैमाना) का उपयोग पित्जर मापदंडों की गणना के लिए किया जा सकता है। अनुभवजन्य मापदंडों का उपयोग आयनिक और गैर-आयनिक विलेय के विलयनों के व्यवहार को मापने के लिए किया जाता है जो ऊष्मागतिक अर्थ में आदर्श विलयन नहीं हैं।
फ़ेफ़र सेल का विकास परासरणीय दाब के मापन के लिए किया गया था।
अनुप्रयोग
आणविक भार के निर्धारण के लिए परासरणीय माप का उपयोग किया जा सकता है।
परासरणीय दाब जैविक कोशिकाओं को प्रभावित करने वाला एक महत्वपूर्ण कारक है।[4] ऑस्मोरेग्यूलेशन,परासरणीय दाब में संतुलन तक पहुंचने के लिए एक जीव का होमियोस्टैसिस तंत्र है।
- अतितनावता एक ऐसे घोल की उपस्थिति है जिसके कारण कोशिकाएं सिकुड़ जाती हैं।
- अतितनावता एक विलयन की उपस्थिति है जो कोशिकाओं में सूजन का कारण बनती है।
- समतानता एक ऐसे विलयन की उपस्थिति है जो कोशिका आयतन में कोई परिवर्तन नहीं उत्पन्न करती है।
जब एक जैविक कोशिका अल्पपरासारी वातावरण में होती है, तो कोशिका के अंदरूनी हिस्से में जल एकत्र हो जाता है, जल कोशिका झिल्ली से होकर कोशिका में प्रवाहित होता है, जिससे कोशिका का विस्तार होता है। पादप कोशिकाओं में, कोशिका भित्ति विस्तार को रोकती है, जिसके परिणामस्वरूप कोशिका भित्ति पर भीतर से दबाव पड़ता है जिसे स्फीति दाब कहा जाता है स्फीति दाब जड़ी-बूटियों के पौधों को सीधा खड़ा होने की अनुमति देता है। यह इस बात का भी निर्धारण कारक है कि पौधे अपने रंध्र के छिद्र को कैसे नियंत्रित करते हैं। पशु कोशिकाओं में यह अत्यधिक परसरणीय दाब के परिणामस्वरूप साइटोलिसिस हो सकता है।
परासरणीय दाब निस्यंदन ("विपरीत परासरण") का आधार है, जो प्रायः जल शोधन में उपयोग की जाने वाली प्रक्रिया है। शुद्ध किए जाने वाले जल को एक कक्ष में रखा जाता है और जल और उसमें घुले विलेय द्वारा लगाए गए परसरणीय दाब से अधिक दाब में इसे रखा जाता है। कक्ष का एक भाग एक भिन्न पारगम्य झिल्ली की ओर खुलता है जो जल के अणुओं को तो अंदर जाने देता है, लेकिन विलेय कणों को नहीं। समुद्र के जल का परसरणीय दाब लगभग 27 atm है। विपरीत परासरण अलवणीकरण समुद्री जल से ताजा जल निकालने के काम आता है।
वांट हॉफ सूत्र की व्युत्पत्ति
निकाय पर उस बिंदु पर विचार करें जब यह संतुलन पर पहुंच गया हो। इसके लिए शर्त यह है कि झिल्ली के दोनों किनारों पर विलायक की रासायनिक क्षमता (केवल यह संतुलन की ओर बहने के लिए स्वतंत्र है) बराबर है। शुद्ध विलायक वाले डिब्बे में रासायनिक क्षमता होती है जहाँ दाब है। दूसरी ओर, विलेय वाले डिब्बे में, विलायक की रासायनिक क्षमता विलायक के मोल अंश पर निर्भर करती है, .इसके अतिरिक्त, यह विभाग एक अलग दाब ग्रहण कर सकता है . इसलिए हम विलायक की रासायनिक क्षमता को इस प्रकार लिख सकते हैं. यदि हम लिखते हैं रासायनिक क्षमता का संतुलन इसलिए है:
यहाँ, दो डिब्बों के दाब में अंतर विलेय द्वारा लगाए गए परासरणीय दाब के रूप में परिभाषित किया गया है। दाब बनाए रखने से, विलेय के योग से रासायनिक क्षमता (एक एन्ट्रापी) कम हो जाती है। इस प्रकार, रासायनिक क्षमता के नुकसान की भरपाई के प्रयास में विलयन के दाब को बढ़ाना पड़ता है।
हम ,परासरणीय दाब के लिए विलेय और शुद्ध जल वाले विलयन के बीच संतुलन पर विचार करते हैं।
हम इसे बाएं हाथ की ओर लिख सकते हैं:
- ,
यहां विलायक का गतिविधि गुणांक है। उत्पाद विलायक की गतिविधि के रूप में भी जाना जाता है, जल के लिए जल की गतिविधि है. विस्तार की ऊर्जा के लिए अभिव्यक्ति के माध्यम से दाब में वृद्धि व्यक्त की जाती है:
कहाँ मोलर आयतन (m³/mol) है। पूरे निकाय के लिए रासायनिक संभावित समीकरण में ऊपर प्रस्तुत अभिव्यक्ति को सम्मिलित करना और पुनर्व्यवस्थित करना इस पर व्यवस्थित किया जा सकता है :
यदि तरल असम्पीडित है तो मोल की मात्रा स्थिर है, , और इस प्रकार यह अभिन्न बन जाता है. इस प्रकार, हम प्राप्त करते हैं
गतिविधि गुणांक सांद्रता और तापमान का एक ही कार्य है, लेकिन तनु मिश्रण में, यह 1.0 के बहुत करीब होता है, इसलिए
विलेय का मोल अंश, , है , से बदला जा सकता है , जो, जब छोटा है, तब पर अनुमान लगाया जा सकता है.
तिल अंश जहाँ छोटा है, इसका अनुमान इस प्रकार लगाया जा सकता है .
इसके अतिरिक्त मोल की मात्रा को मात्रा प्रति तिल के रूप में लिखा जा सकता है, .
इन्हें मिलाने से निम्नलिखित प्राप्त होता है।
नमक के जलीय घोल के लिए, आयनीकरण को ध्यान में रखा जाना चाहिए। उदाहरण के लिए, NaCl का 1 मोल 2 मोल आयनों में आयनित होता है।
यह भी देखें
- गिब्स-डोनन प्रभाव
संदर्भ
- ↑ 1.0 1.1 Voet D, Aadil J, Pratt CW (2001). जैव रसायन की बुनियादी बातों (Rev. ed.). New York: Wiley. p. 30. ISBN 978-0-471-41759-0.
- ↑ Atkins PW, de Paula J (2010). "Section 5.5 (e)". भौतिक रसायन (9th ed.). Oxford University Press. ISBN 978-0-19-954337-3.
- ↑ Lewis GN (1908-05-01). "केंद्रित समाधानों का आसमाटिक दबाव और सही समाधान के नियम।". Journal of the American Chemical Society. 30 (5): 668–683. doi:10.1021/ja01947a002. ISSN 0002-7863. Archived from the original on 2022-06-18. Retrieved 2019-07-04.
- ↑ Esteki MH, Malandrino A, Alemrajabi AA, Sheridan GK, Charras G, Moeendarbary E (December 2021). "जीवित कोशिका आयतन का पोरोइलास्टिक ऑस्मोरग्यूलेशन". iScience (in English). 24 (12): 103482. Bibcode:2021iSci...24j3482E. doi:10.1016/j.isci.2021.103482. PMC 8649806. PMID 34927026.