पुश फॉरवर्ड मापक
माप सिद्धांत में, एक पुशफॉरवर्ड माप (जिसे पुश फॉरवर्ड, पुश-फॉरवर्ड या छवि मापक के रूप में भी जाना जाता है) एक मापने योग्य फलन का उपयोग करके एक मापने योग्य स्थान से दूसरे में एक मापनीय स्थान से एक माप को स्थानांतरित करके प्राप्त किया जाता है।
परिभाषा
मापने योग्य स्थान और दिए गए हैं, एक मापने योग्य मानचित्रण और एक माप , μ के पुशफॉरवर्ड को के लिए द्वारा दिए गए माप के रूप में परिभाषित किया गया है।
यह परिभाषा एक हस्ताक्षरित या जटिल माप के लिए उत्परिवर्ती उत्परिवर्तन लागू करती है। पुशफॉरवर्ड माप को ,, या के रूप में भी दर्शाया गया है।
मुख्य गुण: परिवर्तन-चर-सूत्र:
प्रमेय:[1] X2 पर एक औसतन फंक्शन g, पुशफॉरवर्ड माप f∗(μ) के संबंध में पूर्ण है, यदि और केवल यदि रचना माप μ के संबंध में पूर्ण है उस स्थिति में, अभिन्न संयोग करते हैं, अर्थात,
ध्यान दें कि पिछले सूत्र में ।
उदाहरण और अनुप्रयोग
- संपूर्ण "लेब्सेग माप" यूनिट सर्कल S1 (पर यहां जटिल समतल C) के सबसेट के रूप में सोचा गया है, इसे वास्तविक लाइन R पर पुश-फॉरवर्ड निर्माण और लेबसेग माप λ का उपयोग करके परिभाषित किया जा सकता है। बता दें कि λ ने लेब्सेग माप के प्रतिबंध को अंतराल के लिए भी निरूपित किया है [0, 2π) और f : [0, 2π) → S1 f(t) = exp(i t) द्वारा परिभाषित प्राकृतिक जीवनी है। S1 पर संपूर्ण "लेब्सेग माप" तब पुश-फॉरवर्ड माप f∗(λ) है। माप f∗(λ) को "आर्क लंबाई माप" या "कोण माप" भी कहा जा सकता है, क्योंकि f∗(λ) - S1 में एक चाप का माप ठीक है इसकी चाप लंबाई ( या, समतुल्य, वह कोण जो इसे वृत्त के केंद्र में घटाता है। )
- पिछला उदाहरण एन-डायमेंशनल टोरस Tn पर एक प्राकृतिक "लेब्सग्यू माप" देने के लिए अच्छी तरह से विस्तारित है। पिछला उदाहरण एक विशेष मामला है, क्योंकि S1 = T1। Tn पर यह लेबेस्ग माप, सामान्यीकरण तक, कॉम्पैक्ट, कनेक्टेड लाई समूह Tn के लिए हार माप है।
- अनंत-आयामी वेक्टर स्थानों पर गाऊसी माप को पुश-फॉरवर्ड और वास्तविक रेखा पर मानक गाऊसी माप का उपयोग करके परिभाषित किया गया है: एक पृथक्करणीय बानाच स्थान एक्स पर एक बोरेल माप γ को गाऊसी कहा जाता है यदि किसी गैर-शून्य द्वारा γ को आगे बढ़ाया जाता है X के निरंतर दोहरे स्थान में रैखिक कार्यात्मक R पर एक गाऊसी माप है।
- एक मापने योग्य फलन f : X → X और n बार के साथ f की संरचना पर विचार करें:
- यह पुनरावृत्त फ़ंक्शन एक गतिशील प्रणाली बनाता है। ऐसी प्रणालियों के अध्ययन में अक्सर X पर एक माप μ ढूंढना रुचिकर होता है, जिसे मानचित्र f अपरिवर्तित छोड़ देता है, एक तथाकथित अपरिवर्तनीय माप, यानी एक जिसके लिए f∗(μ) = μ।
- इस तरह के एक गतिशील प्रणाली के लिए अर्ध-अपरिवर्तनीय माप पर भी विचार किया जा सकता है: (पर एक माप ) को के तहत अर्ध-अपरिवर्तक कहा जाता है यदि द्वारा का पुश-फॉरवर्ड केवल मूल माप के बराबर है, जरूरी नहीं कि इसके बराबर हो। माप का एक योग एक ही स्थान पर समतुल्य है यदि और केवल अगर तो μ ∀ A ∈ Σ: के तहत अर्ध-अपरिवर्तक है:
- कई प्राकृतिक संभाव्यता वितरण, जैसे कि ची वितरण, इस निर्माण के माध्यम से प्राप्त किए जा सकते हैं।
- यादृच्छिक चर पुशफ़ॉरवर्ड माप को प्रेरित करते हैं। वे एक कोडोमैन स्पेस में एक संभाव्यता स्थान का मानचित्र बनाते हैं और उस स्थान को पुशफॉरवर्ड द्वारा परिभाषित संभाव्यता माप के साथ संपन्न करते हैं। इसके अलावा, क्योंकि यादृच्छिक चर कार्य हैं ( और इसलिए कुल कार्य ), पूरे कोडोमैन की व्युत्क्रम छवि संपूर्ण डोमेन है, और पूरे डोमेन का माप 1 है, तो पूरे कोडोमैन का माप 1 है। इसका अर्थ है कि यादृच्छिक चर को विज्ञापन अनंत के रूप में बनाया जा सकता है और वे हमेशा यादृच्छिक चर के रूप में बने रहेंगे और संभाव्यता उपायों के साथ कोडोमैन रिक्त स्थान का समर्थन करेंगे।
सामान्यीकरण
सामान्य तौर पर, किसी भी मापने योग्य फ़ंक्शन को आगे बढ़ाया जा सकता है, पुश-फ़ॉरवर्ड फिर एक रैखिक ऑपरेटर बन जाता है, जिसे रैखिक ऑपरेटर या फ्रोबेनियस-पेरॉन ऑपरेटर के रूप में जाना जाता है। सीमित स्थानों में यह ऑपरेटर आमतौर पर फ्रोबेनियस-पेरोन प्रमेय की आवश्यकताओं को पूरा करता है और ऑपरेटर का अधिकतम इगेनवेल्यू अपरिवर्तनीय माप से अनुरूप होता है।
पुश के लिए संलग्न है पुलबैक; एक ऑपरेटर के रूप में कार्यों के रिक्त स्थानों पर, यह संरचना ऑपरेटर या कूपमैन ऑपरेटर है।
यह भी देखें
टिप्पणियाँ
संदर्भ
- Bogachev, Vladimir I. (2007), Measure Theory, Berlin: Springer Verlag, ISBN 9783540345138
- Teschl, Gerald (2015), Topics in Real and Functional Analysis