लैंग्विन गतिकी
भौतिकी में, लैंग्विन गतिकी आणविक प्रणालियों की गतिकी के गणितीय मॉडलिंग के लिए एक दृष्टिकोण है। इसे मूल रूप से फ्रांसीसी भौतिक विज्ञानी पॉल लैंग्विन द्वारा विकसित किया गया था। स्टोकेस्टिक अंतर समीकरणों के उपयोग द्वारा स्वतंत्रता की छोड़ी गई डिग्री के लिए लेखांकन करते समय दृष्टिकोण को सरलीकृत मॉडल के उपयोग की विशेषता है। लैंग्विन गतिकी सिमुलेशन मोंटे कार्लो सिमुलेशन का एक प्रकार है।[1]
सिंहावलोकन
एक वास्तविक विश्व आणविक प्रणाली निर्वात में उपस्थित होने की संभावना नहीं है। विलायक या हवा के अणुओं की जोस्टलिंग घर्षण का कारण बनती है, और कभी-कभी उच्च वेग की टक्कर प्रणाली को प्रभावित कर देगी। लैंग्विन गतिकी इन प्रभावों के लिए अनुमति देने के लिए आणविक गतिकी का विस्तार करने का प्रयास करता है। इसके अलावा, लैंग्विन गतिकी तापमान को तापस्थापी की तरह नियंत्रित करने की अनुमति देता है, इस प्रकार विहित संयोजन का अनुमान लगाता है।
लैंग्विन गतिकी एक विलायक के श्यानिक प्रभाव की कल्पना करती है। यह पूरी तरह से एक अंतर्निहित विलायक का विपणन नहीं करता है; विशेष रूप से, आदर्श विद्युतीय परिवीक्षा के लिए अभिप्रेत नहीं है और हाइड्रोफोबिक प्रभाव के लिए भी नहीं है। सघन विलायकों के लिए, लैंग्विन गतिकी के माध्यम से हाइड्रोडायनामिक अंतःक्रियाओं पर प्रतिबंध नहीं लगाया जाता है।
द्रव्यमान के साथ कणों की एक प्रणाली के लिए निर्देशांक के साथ जो एक समय-निर्भर यादृच्छिक चर का गठन करता है, जिसके परिणामस्वरूप लैंग्विन समीकरण है।[2][3]
जहां कण संपर्क क्षमता है; ग्रेडिएंट ऑपरेटर है जैसे कि कण अंतःक्रिया क्षमता से गणना किया गया बल है; बिंदु एक समय व्युत्पन्न है जैसे कि वेग है और त्वरण है; अवमंदन स्थिरांक (पारस्परिक समय की इकाइयाँ) है, जिसे टकराव आवृत्ति के रूप में भी जाना जाता है; तापमान है, बोल्ट्जमैन का स्थिरांक है; और शून्य-माध्य, संतोषजनक के साथ एक डेल्टा-सहसंबद्ध स्थिर गाऊसी प्रक्रिया है।
यहाँ, डिराक डेल्टा है।
यदि मुख्य उद्देश्य तापमान को नियंत्रित करना है, तो एक छोटे अवमंदन स्थिरांक का उपयोग करने में सावधानी बरती जानी चाहिए। जैसे-जैसे गामा बढ़ता है, यह जड़त्व से लेकर विसरित (ब्राउनियन) नियम तक विस्तृत होता है। गैर-जड़ता की लैंग्विन गतिकी सीमा को आमतौर पर ब्राउनियन गतिकी के रूप में वर्णित किया जाता है। ब्राउनियन गतिकी को ओवरडैम्प्ड लैंग्विन गतिकी के रूप में माना जा सकता है, यानी लैंग्विन गतिकी जहां कोई औसत त्वरण नहीं होता है।
लैंग्विन समीकरण को फोकर – प्लैंक समीकरण के रूप में सुधार किया जा सकता है जो यादृच्छिक चर X की प्रायिकता वितरण को नियंत्रित करता है।[4]
यह भी देखें
- हैमिल्टनियन यांत्रिकी
- सांख्यिकीय यांत्रिकी
- प्रत्यारोपित विलेय
- स्टोकेस्टिक विभेदक समीकरण
- लैंग्विन समीकरण
- क्लेन-क्रेमर्स समीकरण
संदर्भ
- ↑ Namiki, Mikio (2008-10-04). स्टोचैस्टिक क्वांटिज़ेशन (in English). Springer Science & Business Media. p. 176. ISBN 978-3-540-47217-9.
- ↑ Schlick, Tamar (2002). आणविक मॉडलिंग और सिमुलेशन. Springer. p. 480. ISBN 0-387-95404-X.
- ↑ Pastor, R.W. (1994). "Techniques and Applications of Langevin Dynamics Simulations". लकहर्स्ट, जी.आर., वेरासिनी, सी.ए. (एड) लिक्विड क्रिस्टल की आणविक गतिशीलता। नाटो एएसआई श्रृंखला. Vol. 431. Springer, Dordrecht. doi:10.1007/978-94-011-1168-3_5.
- ↑ Shang, Xiaocheng; Kröger, Martin (2020-01-01). "Time Correlation Functions of Equilibrium and Nonequilibrium Langevin Dynamics: Derivations and Numerics Using Random Numbers". SIAM Review. 62 (4): 901–935. doi:10.1137/19M1255471. ISSN 0036-1445.