घर्षण रहित तल

From Vigyanwiki
Revision as of 11:43, 28 June 2023 by alpha>Akanksha
कुंजी:
N = सामान्य बल जो समतल के लम्बवत् है
m = वस्तु का द्रव्यमान
g = गुरुत्व के कारण त्वरण
θ (थीटा) = तल से मापा गया उन्नयन कोण क्षैतिज

घर्षण रहित तल गैलीलियो गैलीली के लेखन की एक अवधारणा है। अपने 1638 में द टू न्यू साइंसेज में गैलीलियो ने एक सूत्र प्रस्तुत किया जिसमें एक झुके हुए तल से नीचे जाने वाली वस्तु की गति की पूर्वानुमान की गई थी।[1] उनका सूत्र मुक्त-गिरते पिंडों के साथ उनके पिछले प्रयोग पर आधारित था। चूँकि उनका मॉडल एक झुके हुए तल से नीचे जाने वाली वस्तुओं के प्रयोग पर आधारित नहीं था[2] चूँकि वस्तु पर कार्य करने वाली ताकतों के उनके वैचारिक मॉडलिंग पर आधारित था। गैलीलियो ने झुके हुए तल की यांत्रिकी को क्षैतिज और ऊर्ध्वाधर सदिशों के संयोजन के रूप में समझा; तल के ढलान से मुड़ी हुई वस्तु पर गुरुत्वाकर्षण के प्रभाव का परिणाम है।[3]

चूँकि गैलीलियो के समीकरण घर्षण पर विचार नहीं करते हैं, और इसलिए वास्तविक प्रयोग के परिणामों की पूरी तरह से पूर्वानुमान नहीं करते हैं। ऐसा इसलिए है क्योंकि जब एक द्रव्यमान दूसरे पर एक गैर-शून्य सामान्य बल लागू करता है तो कुछ ऊर्जा सदैव खो जाती है। इसलिए, प्रेक्षित गति, त्वरण और तय की गई दूरी गैलीलियो की पूर्वानुमान से कम होनी चाहिए।[4] यह ऊर्जा ध्वनि और ऊष्मा जैसे रूपों में खो जाती है। चूँकि गैलीलियो की पूर्वानुमान से एक घर्षण रहित वातावरण में एक झुकाव वाले तल के नीचे जाने की पूर्वानुमान से उन्होंने अधिक्त्त्तर उपयोगी वास्तविक दुनिया प्रयोगात्मक पूर्वानुमान के लिए सैद्धांतिक आधार बनाया था।[5]

वास्तविक दुनिया में घर्षण रहित तल उपस्थित नहीं हैं। चूँकि, यदि उन्होंने किया, तो कोई लगभग निश्चित हो सकता है कि उन पर वस्तुएं गैलीलियो की पूर्वानुमान के समान ही व्यवहार करेंगी। उनके गैर-अस्तित्व के अतिरिक्त कुछ उदाहरणों के नाम पर इंजन, मोटर, रोडवेज और यहां तक ​​​​कि टो-ट्रक बेड के डिजाइन में उनका अधिक महत्व है।[6]

एक झुके हुए तल से नीचे जाने वाली वस्तु पर घर्षण के प्रभाव की गणना इस प्रकार की जा सकती है

जहां वस्तु और झुके हुए तल द्वारा एक दूसरे पर लगाया गया घर्षण बल है, जो तल की सतह के समानांतर है, सामान्य बल है वस्तु और तल द्वारा एक दूसरे पर लगाया गया प्रभाव तल के लंबवत निर्देशित है, और गतिज घर्षण का गुणांक है।[7]

जब तक झुका हुआ तल निर्वात में न हो, हवा के खिंचाव के कारण (सामान्यतः) स्थितिज ऊर्जा की थोड़ी मात्रा भी नष्ट हो जाती है।

यह भी देखें

संदर्भ

  1. Galilei, Galileo (1638). Discorsi e dimostrazioni matematiche intorno á due nuove scienze attinenti alla meccanica & i movimenti locali. Appresso gli Elsevirii.
  2. Drake, Stillman, Galileo’s Experimental Confirmation of Horizontal Inertia: Unpublished Manuscripts. Isis: Vol. 64, No. 3, p. 296.
  3. Settle, T. B. "An Experiment in the History of Science", Science, 1061 133 19–23.
  4. Jenkin, Fleeming. On Friction Between Surfaces at Low Speeds. Proceedings of the Royal Society of London, Vol. 26 p. 93–94
  5. Drake, at p. 297–99
  6. Koyré, Alexandre Metaphysics and Measurement, pp. 83–84 (1992).
  7. Koyré, pp. 84–86.