अन्तर्विभाजक जीवा प्रमेय

From Vigyanwiki
Revision as of 14:14, 5 July 2023 by Manidh (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
प्रतिच्छेदी जीवाओं का प्रमेय
File:तार प्रमेय.svg
Typeप्रमेय
Fieldयूक्लिडियन ज्यामिति
Statementप्रत्येक जीवा पर रेखाखंडों की लंबाई का गुणनफल बराबर होता है।
Symbolic statement

प्रतिच्छेदी जीवा प्रमेय या सिर्फ जीवा प्रमेय प्राथमिक ज्यामिति में एक कथन है | जो एक वृत्त के भीतर दो प्रतिच्छेदी जीवाओं (ज्यामिति) द्वारा बनाए गए चार लाइन खंडों के संबंध का वर्णन करता है।

इसमें कहा गया है कि प्रत्येक जीवा पर रेखाखंडों की लंबाई का गुणनफल समान होता है।

यह यूक्लिड के यूक्लिड के तत्वों | तत्वों की पुस्तक 3 का प्रस्ताव 35 है।

अधिक सटीक रूप से, दो जीवा AC और BD एक बिंदु S में प्रतिच्छेद करने के लिए निम्नलिखित समीकरण धारण करता है:

इसका विलोम भी सत्य है, अर्थात यदि S में प्रतिच्छेद करने वाले दो रेखाखंड AC और BD के लिए उपरोक्त समीकरण सत्य है, तो उनके चार अंतिम बिंदु A, B, C और D एक उभयनिष्ठ वृत्त पर स्थित होते हैं। या दूसरे शब्दों में यदि किसी चतुर्भुज ABCD के विकर्ण S में प्रतिच्छेद करते हैं | और उपरोक्त समीकरण को पूरा करते हैं | तो यह एक चक्रीय चतुर्भुज है।

तार प्रमेय में दो उत्पादों का मूल्य केवल सर्कल के केंद्र से चौराहे बिंदु एस की दूरी पर निर्भर करता है और इसे बिंदु की शक्ति का पूर्ण मूल्य कहा जाता है, अधिक सटीक रूप से यह कहा जा सकता है| कि:

जहाँ r वृत्त की त्रिज्या है, और d वृत्त के केंद्र और प्रतिच्छेदन बिंदु S के बीच की दूरी है। यह गुण सीधे जीवा प्रमेय को लागू करने से लेकर S और वृत्त के केंद्र M तक जाने वाली तीसरी जीवा पर लागू होता है (चित्र देखें) ).

समान त्रिभुजों का उपयोग करके प्रमेय को सिद्ध किया जा सकता है | (अंकित कोण | अंकित-कोण प्रमेय के माध्यम से)। त्रिभुज ASD और BSC के कोणों पर विचार करें:

इसका अर्थ है, कि त्रिकोण एएसडी और बीएससी समान हैं | और इसलिए

स्पर्शरेखा-सेकेंट प्रमेय और अन्तर्विभाजक छेदक प्रमेय के आगे प्रतिच्छेदी जीवा प्रमेय दो प्रतिच्छेदी लाइनों और एक घेरा के बारे में एक अधिक सामान्य प्रमेय के तीन बुनियादी स्थितियों में से एक का प्रतिनिधित्व करता है - एक_बिंदु_की_शक्ति प्रमेय।

संदर्भ

  • Paul Glaister: Intersecting Chords Theorem: 30 Years on. Mathematics in School, Vol. 36, No. 1 (Jan., 2007), p. 22 (JSTOR)
  • Bruce Shawyer: Explorations in Geometry. World scientific, 2010, ISBN 9789813100947, p. 14
  • Hans Schupp: Elementargeometrie. Schöningh, Paderborn 1977, ISBN 3-506-99189-2, p. 149 (German).
  • Schülerduden - Mathematik I. Bibliographisches Institut & F.A. Brockhaus, 8. Auflage, Mannheim 2008, ISBN 978-3-411-04208-1, pp. 415-417 (German)


बाहरी संबंध