अनुकूली तुल्यकारक

From Vigyanwiki
Revision as of 19:52, 18 June 2023 by alpha>Indicwiki (Created page with "एक अनुकूली तुल्यकारक एक तुल्यकारक (संचार) है जो संचार चैनल के समय-...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

एक अनुकूली तुल्यकारक एक तुल्यकारक (संचार) है जो संचार चैनल के समय-भिन्न गुणों के लिए स्वचालित रूप से अनुकूल होता है।[1] यह अक्सर सुसंगत संयोजनों के साथ प्रयोग किया जाता है जैसे कि चरण-शिफ्ट कुंजीयन, बहुपथ प्रसार और लुप्त होती के प्रभावों को कम करना।

अनुकूली तुल्यकारक अनुकूली फिल्टर का एक उपवर्ग है। केंद्रीय विचार फ़िल्टर विशेषता को अनुकूलित करने के लिए फ़िल्टर के गुणांक को बदल रहा है। उदाहरण के लिए, वीनर फ़िल्टर#सीमित आवेग प्रतिक्रिया के मामले में असतत श्रृंखला के लिए वीनर फ़िल्टर|रैखिक असतत-समय फ़िल्टर, निम्नलिखित समीकरण का उपयोग किया जा सकता है:[2]

कहाँ फ़िल्टर के गुणांक का वेक्टर है, प्राप्त संकेत सहप्रसरण मैट्रिक्स है और टैप-इनपुट वेक्टर और वांछित प्रतिक्रिया के बीच क्रॉस-सहसंबंध वेक्टर है। व्यवहार में, अंतिम मात्राएँ ज्ञात नहीं हैं और, यदि आवश्यक हो, तो समीकरण प्रक्रिया के दौरान या तो स्पष्ट रूप से या परोक्ष रूप से अनुमान लगाया जाना चाहिए।

कई अनुकूलन रणनीतियाँ मौजूद हैं। उनमें शामिल हैं, उदाहरण के लिए:

  • कम से कम औसत वर्ग फ़िल्टर (एलएमएस) ध्यान दें कि रिसीवर के पास प्रेषित सिग्नल तक पहुंच नहीं है जब यह प्रशिक्षण मोड में नहीं है। यदि तुल्यकारक द्वारा गलती करने की संभावना पर्याप्त रूप से कम है, तो प्रतीक निर्णय तुल्यकारक द्वारा प्रतिस्थापित किया जा सकता है .[3]
  • स्टोचैस्टिक ग्रेडिएंट डिसेंट (SG)
  • पुनरावर्ती न्यूनतम वर्ग फ़िल्टर (RLS)
The mean square error performance of LMS, SG and RLS in dependence of training symbols. Parameter denotes step size, and means forgetting factor.
The mean square error performance of LMS, SG and RLS in dependence of training symbols in case of changed during the training procedure channel. Signal power is 1 W, noise power is 0.01 W.

एक प्रसिद्ध उदाहरण निर्णय प्रतिक्रिया तुल्यकारक है,[4][5] एक फिल्टर जो भविष्य के प्रतीकों के पारंपरिक समीकरण के अलावा पता लगाए गए मॉडुलन की प्रतिक्रिया का उपयोग करता है।[6] अनुकूलन प्रक्रिया के लिए संदर्भ बिंदु प्रदान करने के लिए कुछ प्रणालियां पूर्वनिर्धारित प्रशिक्षण अनुक्रमों का उपयोग करती हैं।

यह भी देखें

संदर्भ

  1. S. Haykin. (1996). Adaptive Filter Theory. (3rd edition). Prentice Hall.
  2. Haykin, Simon S. (2008). अनुकूली फ़िल्टर सिद्धांत. Pearson Education India. p. 118.
  3. Tutorial on the LMS algorithm
  4. Decision Feedback Equalizer
  5. Warwick, Colin (March 28, 2012). "निर्णय प्रतिक्रिया तुल्यकारक के लिए, सौंदर्य आंखों में है". Signal Integrity. Agilent Technologies.
  6. Stevens, Ransom. "Equalization: The Correction and Analysis of Degraded Signals" (PDF). Keysight.com.