लघुगणकीय कार्यों के अभिन्नों की सूची
निम्नलिखित लघुगणकीय फलनों के समाकलन (प्रतिअवकलन फलन) की सूची है। अभिन्न कार्यों की पूरी सूची के लिए, अभिन्नों की सूची देखें।
ध्यान दें: इस पूरे आलेख में x > 0 मान लिया गया है, और सरलता के लिए एकीकरण के स्थिरांक को छोड़ दिया गया है।
केवल लघुगणकीय कार्यों वाले समाकलन
![{\displaystyle \int \log _{a}x\,dx=x\log _{a}x-{\frac {x}{\ln a}}={\frac {x\ln x-x}{\ln a}}}](/index.php?title=Special:MathShowImage&hash=82ecbd3255fcfabb172dbe005ac86017&mode=mathml)
![{\displaystyle \int \ln(ax)\,dx=x\ln(ax)-x}](/index.php?title=Special:MathShowImage&hash=ba2f8b796f3744b5184a80167491e59e&mode=mathml)
![{\displaystyle \int \ln(ax+b)\,dx={\frac {(ax+b)\ln(ax+b)-(ax+b)}{a}}}](/index.php?title=Special:MathShowImage&hash=fe96d6e07767b3fa91c986d0175df8a8&mode=mathml)
![{\displaystyle \int (\ln x)^{2}\,dx=x(\ln x)^{2}-2x\ln x+2x}](/index.php?title=Special:MathShowImage&hash=e6a2970c01a652d65509ff5b01948b84&mode=mathml)
![{\displaystyle \int (\ln x)^{n}\,dx=x\sum _{k=0}^{n}(-1)^{n-k}{\frac {n!}{k!}}(\ln x)^{k}}](/index.php?title=Special:MathShowImage&hash=f3e5bfe3ed1456793f6d49eb46e586d4&mode=mathml)
![{\displaystyle \int {\frac {dx}{\ln x}}=\ln |\ln x|+\ln x+\sum _{k=2}^{\infty }{\frac {(\ln x)^{k}}{k\cdot k!}}}](/index.php?title=Special:MathShowImage&hash=d08fca849e095b0ebfe8cac2c56788ec&mode=mathml)
, लघुगणकीय अभिन्न है।
![{\displaystyle \int {\frac {dx}{(\ln x)^{n}}}=-{\frac {x}{(n-1)(\ln x)^{n-1}}}+{\frac {1}{n-1}}\int {\frac {dx}{(\ln x)^{n-1}}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}](/index.php?title=Special:MathShowImage&hash=d0c2da3fc7c288e1e10fe9921cae39db&mode=mathml)
![{\displaystyle \int \ln f(x)\,dx=x\ln f(x)-\int x{\frac {f'(x)}{f(x)}}\,dx\qquad {\mbox{(for differentiable }}f(x)>0{\mbox{)}}}](/index.php?title=Special:MathShowImage&hash=39489cefc93fd9496ece006ef7c51b66&mode=mathml)
लघुगणकीय और घातांक फलन से जुड़े समाकल
![{\displaystyle \int x^{m}\ln x\,dx=x^{m+1}\left({\frac {\ln x}{m+1}}-{\frac {1}{(m+1)^{2}}}\right)\qquad {\mbox{(for }}m\neq -1{\mbox{)}}}](/index.php?title=Special:MathShowImage&hash=a67beea831d7b802f7ee07719aea0f0a&mode=mathml)
![{\displaystyle \int x^{m}(\ln x)^{n}\,dx={\frac {x^{m+1}(\ln x)^{n}}{m+1}}-{\frac {n}{m+1}}\int x^{m}(\ln x)^{n-1}dx\qquad {\mbox{(for }}m\neq -1{\mbox{)}}}](/index.php?title=Special:MathShowImage&hash=2d8ca3464dbab4802766749d3bc0df30&mode=mathml)
![{\displaystyle \int {\frac {(\ln x)^{n}\,dx}{x}}={\frac {(\ln x)^{n+1}}{n+1}}\qquad {\mbox{(for }}n\neq -1{\mbox{)}}}](/index.php?title=Special:MathShowImage&hash=895087d91091f445debde135af4130d4&mode=mathml)
![{\displaystyle \int {\frac {\ln x\,dx}{x^{m}}}=-{\frac {\ln x}{(m-1)x^{m-1}}}-{\frac {1}{(m-1)^{2}x^{m-1}}}\qquad {\mbox{(for }}m\neq 1{\mbox{)}}}](/index.php?title=Special:MathShowImage&hash=af29a55892f63c34dcfc7a8ee049b5f8&mode=mathml)
![{\displaystyle \int {\frac {(\ln x)^{n}\,dx}{x^{m}}}=-{\frac {(\ln x)^{n}}{(m-1)x^{m-1}}}+{\frac {n}{m-1}}\int {\frac {(\ln x)^{n-1}dx}{x^{m}}}\qquad {\mbox{(for }}m\neq 1{\mbox{)}}}](/index.php?title=Special:MathShowImage&hash=bf17626f87a8a01c95b800265fcc0c96&mode=mathml)
![{\displaystyle \int {\frac {x^{m}\,dx}{(\ln x)^{n}}}=-{\frac {x^{m+1}}{(n-1)(\ln x)^{n-1}}}+{\frac {m+1}{n-1}}\int {\frac {x^{m}dx}{(\ln x)^{n-1}}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}](/index.php?title=Special:MathShowImage&hash=370e43931a367f62953dbed995482029&mode=mathml)
![{\displaystyle \int {\frac {dx}{x\ln x}}=\ln \left|\ln x\right|}](/index.php?title=Special:MathShowImage&hash=d19a184b15d23dfd3256982fd6b949a3&mode=mathml)
, आदि है।
![{\displaystyle \int {\frac {dx}{x\ln \ln x}}=\operatorname {li} (\ln x)}](/index.php?title=Special:MathShowImage&hash=29be95087e2e0a2be37fc9292874c37d&mode=mathml)
![{\displaystyle \int {\frac {dx}{x^{n}\ln x}}=\ln \left|\ln x\right|+\sum _{k=1}^{\infty }(-1)^{k}{\frac {(n-1)^{k}(\ln x)^{k}}{k\cdot k!}}}](/index.php?title=Special:MathShowImage&hash=fd55fe01f8edae44c93b99a2085137d3&mode=mathml)
![{\displaystyle \int {\frac {dx}{x(\ln x)^{n}}}=-{\frac {1}{(n-1)(\ln x)^{n-1}}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}](/index.php?title=Special:MathShowImage&hash=c6dfb13bc4b5e4a90c1c5f209276f0ef&mode=mathml)
![{\displaystyle \int \ln(x^{2}+a^{2})\,dx=x\ln(x^{2}+a^{2})-2x+2a\tan ^{-1}{\frac {x}{a}}}](/index.php?title=Special:MathShowImage&hash=a242ce9354b40abc47a419c0f20aa104&mode=mathml)
![{\displaystyle \int {\frac {x}{x^{2}+a^{2}}}\ln(x^{2}+a^{2})\,dx={\frac {1}{4}}\ln ^{2}(x^{2}+a^{2})}](/index.php?title=Special:MathShowImage&hash=cbd81135415b1a856b0ca71146da9ba0&mode=mathml)
लघुगणकीय और त्रिकोणमितीय कार्यों से युक्त समाकलन
![{\displaystyle \int \sin(\ln x)\,dx={\frac {x}{2}}(\sin(\ln x)-\cos(\ln x))}](/index.php?title=Special:MathShowImage&hash=cc154d531b844b9870cac3f34c8d9229&mode=mathml)
![{\displaystyle \int \cos(\ln x)\,dx={\frac {x}{2}}(\sin(\ln x)+\cos(\ln x))}](/index.php?title=Special:MathShowImage&hash=6b239417fe75bbbb626345ff39a418fa&mode=mathml)
लघुगणकीय और घातांकीय कार्यों से युक्त समाकलन
![{\displaystyle \int e^{x}\left(x\ln x-x-{\frac {1}{x}}\right)\,dx=e^{x}(x\ln x-x-\ln x)}](/index.php?title=Special:MathShowImage&hash=2617eb5a394f48461c62ac071e0e79f6&mode=mathml)
![{\displaystyle \int {\frac {1}{e^{x}}}\left({\frac {1}{x}}-\ln x\right)\,dx={\frac {\ln x}{e^{x}}}}](/index.php?title=Special:MathShowImage&hash=89e4e3de6480ec3fba3136456b5419b6&mode=mathml)
![{\displaystyle \int e^{x}\left({\frac {1}{\ln x}}-{\frac {1}{x(\ln x)^{2}}}\right)\,dx={\frac {e^{x}}{\ln x}}}](/index.php?title=Special:MathShowImage&hash=f771dd73604a95f4c71fe319b7aa0cc3&mode=mathml)
n क्रमागत एकीकरण
के लिए
क्रमागत एकीकरण, सूत्र
![{\displaystyle \int \ln x\,dx=x(\ln x-1)+C_{0}}](/index.php?title=Special:MathShowImage&hash=5cd04ec364d7ba31e6e9f2d74af6072c&mode=mathml)
को सामान्यीकृत करता है
![{\displaystyle \int \dotsi \int \ln x\,dx\dotsm dx={\frac {x^{n}}{n!}}\left(\ln \,x-\sum _{k=1}^{n}{\frac {1}{k}}\right)+\sum _{k=0}^{n-1}C_{k}{\frac {x^{k}}{k!}}}](/index.php?title=Special:MathShowImage&hash=7ad3568da00944b47ede1385596a6537&mode=mathml)
यह भी देखें
संदर्भ