न्यूनतम गणना

From Vigyanwiki
Revision as of 22:43, 20 June 2023 by alpha>Indicwiki (Created page with "{{Short description|Smallest value a measuring instrument can measure}} File:Scale least count.jpg|thumb|डायटर की समस्या: यह स्केल 0....")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
डायटर की समस्या: यह स्केल 0.1 lbs को हल नहीं कर सकता जैसा कि डिजिटल डिस्प्ले दिखाएगा, लेकिन केवल 0.2 lbs के वजन परिवर्तन को हल कर सकता है

मैट्रोलोजी में, मापने वाले यंत्र की कम से कम गिनती मापा मात्रा में सबसे छोटा मान है जिसे उपकरण के पैमाने पर हल किया जा सकता है।[1] न्यूनतम गणना एक उपकरण की सटीकता और सटीकता से संबंधित है; एक उपकरण जो किसी अन्य उपकरण के सापेक्ष मूल्य में छोटे परिवर्तनों को माप सकता है, उसका कम से कम गणना मूल्य होता है और इसलिए यह अधिक सटीक होता है। उपकरण द्वारा किए गए किसी भी माप को कम से कम गणना के संकल्प से कम नहीं दोहराया जा सकता है। किसी यंत्र का अल्पतमांक यंत्र की परिशुद्धता के व्युत्क्रमानुपाती होता है।

उदाहरण के लिए, एक धूपघड़ी में केवल दिन के उजाले के घंटों का प्रतिनिधित्व करने वाले पैमाने के निशान हो सकते हैं; इसकी कम से कम एक घंटे की गिनती होगी। एक स्टॉपवॉच देखनी एक दौड़ का समय निर्धारित करने के लिए इस्तेमाल किया जा सकता है, इसकी कम से कम गिनती सेकंड के सौवें हिस्से तक हो सकती है। स्टॉपवॉच, सूंडियल की तुलना में समय अंतराल को मापने में अधिक सटीक है क्योंकि इसमें बीता हुआ समय के प्रत्येक घंटे में अधिक गिनती (स्केल अंतराल) होती है। विभिन्न प्रयोगों में उपयोग किए जाने वाले वर्नियर कैलिपर और स्क्रू गेज जैसे उपकरणों की सटीक रीडिंग प्राप्त करने के लिए एक उपकरण की लीस्ट काउंट एक बहुत ही महत्वपूर्ण उपकरण है।

अल्पतमांक अनिश्चितता मापन में प्रायोगिक त्रुटि के स्रोतों में से एक है। नली का व्यास का लीस्ट काउंट 0.1 मिमी और माइक्रोमीटर (डिवाइस) का लीस्ट काउंट 0.01 मिमी होता है।

कम से कम त्रुटि

मापक यंत्र द्वारा मापा जा सकने वाला सबसे छोटा मान उसका अल्पतमांक कहलाता है। मापे गए मान केवल इस मान तक ही अच्छे होते हैं। सबसे कम गिनती त्रुटि उपकरण के संकल्प से जुड़ी त्रुटि है।

एक मीटर रूलर में 1 मिमी डिवीजन स्केल स्पेसिंग या अंतराल पर स्नातक हो सकते हैं। कैलीपर पर एक वर्नियर स्केल में 0.1 मिमी की कम से कम गिनती हो सकती है जबकि एक माइक्रोमीटर में 0.01 मिमी या 10 माइक्रोन की कम से कम गिनती हो सकती है।

कम से कम गिनती त्रुटि व्यवस्थित और यादृच्छिक दोनों त्रुटियों के साथ होती है। उच्च परिशुद्धता के उपकरण अल्पतमांक त्रुटि को कम कर सकते हैं। प्रेक्षणों को दोहराने और परिणाम का अंकगणितीय माध्य लेने पर माध्य मान मापी गई मात्रा के वास्तविक मान के बहुत निकट होगा।

संदर्भ

  1. William Woolsey Johnson The Theory of Errors and Method of Least Squares, Press of I. Friedenwald, 1890; page 1