जाली फेज तुल्यकारक
Linear analog electronic filters |
---|
जाली चरण तुल्यकारक या जाली फ़िल्टर एक ऑल-पास फिल्टर का एक उदाहरण है। अर्थात्, फ़िल्टर का क्षीणन सभी आवृत्ति पर स्थिर होता है लेकिन इनपुट और आउटपुट के बीच सापेक्ष चरण (तरंगें) आवृत्ति के साथ बदलता रहता है। जाली इलेक्ट्रॉनिक फिल्टर टोपोलॉजी में निरंतर-प्रतिरोधी नेटवर्क होने की विशेष संपत्ति होती है और इस कारण के लिए अधिकांशतः अन्य निरंतर-प्रतिरोधी फिल्टर जैसे ब्रिज-टी समानताओं के साथ संयोजन में उपयोग किया जाता है। जाली फिल्टर की टोपोलॉजी (इलेक्ट्रॉनिक्स), जिसे एक्स-सेक्शन भी कहा जाता है, ब्रिज सर्किट के समान है। जाली चरण बराबरी का आविष्कार जॉर्ज एशले कैंपबेल द्वारा प्रस्तावित एक फिल्टर टोपोलॉजी का उपयोग करते हुए ओटो ज़ोबेल[1][2] द्वारा किया गया था।[3]
विशेषताएं
इस संरचना की विशेषता प्रतिबाधा द्वारा दी गई है
और स्थानांतरण समारोह द्वारा दिया जाता है
- .
अनुप्रयोग
लैटिस फ़िल्टर में स्टीरियोफोनिक ध्वनि फ़ीड्स के लिए प्रसारणकर्ताओं द्वारा उपयोग की जाने वाली लाइनों पर एक महत्वपूर्ण अनुप्रयोग होता है। मोनोफोनी लाइन पर प्रावस्था विरूपण ध्वनि की गुणवत्ता पर तब तक गंभीर प्रभाव नहीं डालता जब तक कि यह बहुत बड़ी न हो। यही बात एक स्टीरियो जोड़ी लाइनों के प्रत्येक पैर (बाएं और दाएं चैनल) पर निरपेक्ष चरण विरूपण के बारे में भी सच है। हालांकि, पैरों के बीच के अंतर चरण का स्टीरियो छवि पर बहुत नाटकीय प्रभाव पड़ता है। ऐसा इसलिए है क्योंकि मस्तिष्क में स्टीरियो छवि का निर्माण दोनों कानों से चरण अंतर जानकारी पर निर्भर करता है। एक चरण अंतर एक देरी से अनुवाद करता है, जो बदले में ध्वनि की एक दिशा के रूप में व्याख्या की जा सकती है। नतीजतन, स्टीरियो प्रसारण के लिए प्रसारकों द्वारा उपयोग की जाने वाली लैंडलाइन बहुत तंग अवकल चरण विनिर्देशों के लिए बराबरी कर ली जाती हैं।
जालीदार फिल्टर का एक अन्य गुण यह है कि यह अंतर्गर्भाशयत संतुलित रेखा टोपोलॉजी है। इसका उपयोग ऐसे लैंडलाइन्स के साथ किया जाता है जो सदैव एक संतुलित प्रारूप का प्रयोग करते हैं। कई अन्य प्रकार के फिल्टर सेक्शन स्वाभाविक रूप से असंतुलित होते हैं और इन अनुप्रयोगों में संतुलित कार्यान्वयन में बदलना पड़ता है, जिससे घटक गणना बढ़ती है। लैटिस फ़िल्टर्स के मामले में यह आवश्यक नहीं है.
डिजाइन
- Parts of this article or section rely on the reader's knowledge of the complex impedance representation of capacitors and inductors and on knowledge of the frequency domain representation of signals.
जाली फ़िल्टर के लिए अनिवार्य आवश्यकता यह है कि स्थिर प्रतिरोध होने के लिए, फ़िल्टर का जाली तत्व को विशेषता प्रतिबाधा के संबंध में श्रृंखला तत्व का दोहरी प्रतिबाधा होना आवश्यक है. अर्थात्,
- .
ऐसा नेटवर्क, जब R0 में समाप्त हो जाएगा, सभी आवृत्तियों पर R0 का इनपुट प्रतिरोध होगा. यदि प्रतिबाधा Z विशुद्ध रूप से प्रतिक्रियाशील है जैसे Z = iX तो प्रावस्था पाली, φ, फ़िल्टर द्वारा प्रविष्ट की जाती है, द्वारा दी जाती है
.
यहाँ दिखाया गया प्रोटोटाइप फ़िल्टर जालीदार फिल्टर बिना संशोधन के कम आवृत्तियां पास करता है लेकिन चरण-पाली उच्च आवृत्तियां होती हैं। अर्थात् यह बैंड के उच्च अंत के लिए चरण सुधार है। कम आवृत्तियों पर चरण शिफ़्ट 0° होता है लेकिन जैसे-जैसे आवृत्ति चरण शिफ़्ट का दृष्टिकोण 180° तक बढ़ता है. गुणात्मक रूप से देखा जा सकता है कि आगमनाकों को ओपन सर्किट से प्रतिस्थापित करके और कैपेसिटर को शॉर्ट सर्किट से प्रतिस्थापित करके ऐसा किया जाता है, जो कि उच्च आवृत्तियों पर बन जाता है। उच्च आवृत्तियों पर लैटिस फ़िल्टर एक क्रॉस-ओवर नेटवर्क होता है और 180° फेज़ शिफ्ट का उत्पादन करेगा. एक 180° चरण वाला शिफ़्ट, आवृत्ति डोमेन में व्युत्क्रम के समान ही होता है, लेकिन समय डोमेन में एक विलंब होता है. कोणीय आवृत्ति पर ω = 1 rad/s पर चरण शिफ़्ट बिलकुल 90° होती है और यह फ़िल्टर के स्थानांतरण फ़ंक्शन का मध्यबिंदु होता है।
लो-इन-फेज सेक्शन
सामान्य प्रोटोटाइप फ़िल्टर रूपांतरण लागू करके प्रोटोटाइप अनुभाग को बढ़ाया जा सकता है और वांछित आवृत्ति, प्रतिबाधा और बैंडफॉर्म में परिवर्तित किया जा सकता है। एक फिल्टर जो कम आवृत्तियों पर इन-फेज है (अर्थात, जो उच्च आवृत्तियों पर चरण को सही कर रहा है) सरल स्केलिंग कारकों के साथ प्रोटोटाइप से प्राप्त किया जा सकता है।
एक स्केल्ड फ़िल्टर की चरण प्रतिक्रिया किसके द्वारा दी जाती है
,
जहाँ ωm मध्यबिंदु आवृत्ति है और इसके द्वारा दिया जाता है
.
हाई-इन-फेज सेक्शन
एक फिल्टर जो उच्च आवृत्तियों पर इन-फेज़ होता है (अर्थात कम-अंत चरण को सही करने के लिए एक फिल्टर) प्रोटोटाइप फिल्टर में उच्च-पास रूपांतरण लागू करके प्राप्त किया जा सकता है। हालांकि, यह देखा जा सकता है कि जालक टोपोलॉजी के कारण यह भी संगत निम्न-चरण खंड के आउटपुट पर एक क्रॉसओवर के बराबर है। हो सकता है कि यह दूसरी पद्धति न केवल परिकलन को आसान बना दे बल्कि यह एक उपयोगी गुण भी है जहाँ लाइनों की अस्थायी आधार पर बराबरी की जा रही है, उदाहरण के लिए बाहरी प्रसारण के लिए. विभिन्न प्रकार के समायोज्य अनुभागों की संख्या को अस्थायी कार्य के लिए न्यूनतम रखना और उच्च अंत और निम्न दोनों सुधार के लिए समान अनुभाग का उपयोग करने में सक्षम होना एक विशिष्ट लाभ है।
बैंड बराबर अनुभाग
एक फ़िल्टर जो आवृत्तियों के सीमित बैंड-स्टॉप को सुधारता है (अर्थात, वह फ़िल्टर जो बैंड को ठीक किए जाने के अलावा हर जगह इन-फेज होता है), वह प्रोटोटाइप फ़िल्टर में बैंड-स्टॉप रूपांतरण लागू करके प्राप्त किया जा सकता है। इसके परिणामस्वरूप फिल्टर के नेटवर्क में दिखाई देने वाले अनुनादी तत्व दिखाई देते हैं।
एक विकल्प, और संभवतः अधिक सटीक, इस फ़िल्टर के प्रतिसाद का दृश्य इसे एक ऐसे चरण परिवर्तन के रूप में वर्णित करना है जो बढ़ती आवृत्ति के साथ 0° से 360° तक भिन्न होता है. 360° चरण की शिफ़्ट पर, बेशक, इनपुट और आउटपुट अब एक दूसरे के साथ चरण में वापस आ गए हैं। .
प्रतिरोध मुआवजा
आदर्श घटकों के साथ जालीदार फिल्टरों के डिजाइन में प्रतिरोधों का उपयोग करने की आवश्यकता नहीं होती। हालांकि, वास्तविक घटकों के गुणों के व्यावहारिक विचार प्रतिरोधों को समाविष्ट करने की ओर ले जाते हैं। निम्न ऑडियो आवृत्तियों की बराबरी करने के लिए डिज़ाइन किए गए अनुभागों में उच्च संख्या में घुमाव वाले बड़े उत्प्रेरकक होंगे. इससे फ़िल्टर की प्रेरक शाखाओं में महत्वपूर्ण प्रतिरोध होता है, जो बदले में कम आवृत्तियों पर क्षीणन का कारण बनता है.
उदाहरण आरेख में, संधारित्र के साथ श्रृंखला में रखे प्रतिरोधों को आगमनाकों में उपस्थित अवांछित प्रतिरोध के बराबर बनाया जाता है। यह सुनिश्चित करता है कि उच्च आवृत्ति पर क्षीणन कम आवृत्ति पर क्षीणन के समान ही होता है और फ़िल्टर को वापस सपाट प्रतिक्रिया पर लाता है. पार्श्वपथ प्रतिरोधों, आर2, का उद्देश्य फ़िल्टर की छवि प्रतिबाधा को मूल डिज़ाइन R0 पर वापस लाना है. परिणामी फ़िल्टर, आर1 के और आर2 के कैस्केड में एक आदर्श लैटिस फ़िल्टर के साथ जुड़े हुए बॉक्स क्षीणक के समतुल्य है, जैसा कि आरेख में दिखाया गया है।
असंतुलित टोपोलॉजी
जालक चरण इक्वलाइज़र को सक्रिय घटकों को सम्मिलित किए बिना T-अनुभाग टोपोलॉजी में सीधे परिवर्तित नहीं किया जा सकता. हालांकि आदर्श ट्रांसफार्मर लगाने पर टी-सेक्शन संभव है। दोनों आगमनाकों को एक सामान्य कोर पर वाइंडिंग करके ट्रांसफॉर्मर की क्रिया को निम्न-चरण के T-सेक्शन में सुविधापूर्वक प्राप्त किया जा सकता है। इस खंड की प्रतिक्रिया मूल जालक के समान होती है, यद्यपि एक गैर-स्थिर-प्रतिरोध इनपुट के साथ। इस सर्किट का उपयोग सबसे पहले जॉर्ज वाशिंगटन पियर्स ने किया, जिन्हें विश्व युद्धों के बीच विकसित हुए सुविकसित सोनार के हिस्से के रूप में एक देरी लाइन की जरूरत थी। पियर्स ने आवश्यक देरी प्रदान करने के लिए इन वर्गों के एक कैस्केड का उपयोग किया। परिपथ को m > 1, जो संचरण शून्य को जटिल आवृत्ति विमान के jω अक्ष पर रखता है।[3] आदर्श ट्रांसफार्मर का उपयोग करने वाले अन्य असंतुलित परिवर्तन संभव हैं; ऐसा ही एक दाईं ओर दिखाया गया है।[4]
यह भी देखें
- जाली देरी नेटवर्क
- ज़ोबेल नेटवर्क
- बार्टलेट का द्विभाजन प्रमेय
- ब्रिज टी विलंब तुल्यकारक
संदर्भ
- ↑ Zobel, O J, Phase-shifting network, US patent 1 792 523, filed 12 March 1927, issued 17 Feb 1931.
- ↑ Zobel, O J, Distortion Compensator, US patent 1 701 552, filed 26 June 1924, issued 12 Feb 1929.
- ↑ 3.0 3.1 Darlington, S, "A history of network synthesis and filter theory for circuits composed of resistors, inductors, and capacitors", IEEE Trans. Circuits and Systems, vol 31, pp. 3–13, 1984.
- ↑ Vizmuller, P, RF Design Guide: Systems, Circuits, and Equations, pp. 82–84, Artech House, 1995 ISBN 0-89006-754-6.