हार्डी स्पेस

From Vigyanwiki

जटिल विश्लेषण में, हार्डी स्पेस (या हार्डी क्लास) Hpयूनिट डिस्क या ऊपरी आधे तल पर होलोमोर्फिक फलन के कुछ स्थान हैं। उनका परिचय फ्रिगयेस रिज़्ज़ (रिज़्ज़ 1923)द्वारा किया गया था, जिन्होंने पेपर (हार्डी 1915) के कारण उनका नाम जी. एच. हार्डी के नाम पर रखा। वास्तविक विश्लेषण में हार्डी स्पेस वास्तविक रेखा पर वितरण (गणित) के कुछ निश्चित स्थान होते हैं, जो (वितरण के अर्थ में) जटिल संख्या हार्डी स्पेस के होलोमोर्फिक कार्यों के सीमा मान होते हैं, और एलपी स्पेस से संबंधित होते हैं। 1 ≤ p < ∞ के लिए ये वास्तविक हार्डी स्पेस Hp, Lp के कुछ उपसमुच्चय होते हैं, जबकि p < 1 के लिए Lp स्पेस कार्यात्मक विश्लेषण के स्थान में कुछ अवांछनीय गुण उपस्थित होते हैं, और हार्डी स्पेस बहुत बेहतर व्यवहार करते हैं।

उच्च-आयामी सामान्यीकरण भी होते हैं, जिसमें जटिल मामले में ट्यूब डोमेन पर कुछ होलोमोर्फिक फलन सम्मलित होता हैं, या वास्तविक स्थतियों में Rn पर वितरण के कुछ स्थान सम्मलित होते हैं।

हार्डी स्पेस के गणितीय विश्लेषण के साथ-साथ नियंत्रण सिद्धांत (जैसे कि H∞ विधियाँ) और प्रकीर्णन सिद्धांत भी कई अनुप्रयोग होते हैं।

यूनिट डिस्क के लिए हार्डी स्पेस

खुली इकाई डिस्क पर होलोमोर्फिक फलन के रिक्त स्थान के लिए, हार्डी स्पेस H2 में फलन f सम्मलित होता है जिसका मूल माध्य वर्ग त्रिज्या r के वृत्त पर नीचे से r → 1 के रूप में घिरा रहता है।

अधिक सामान्यतः, 0 < p < ∞ के लिए हार्डी स्पेस Hp, ओपन यूनिट डिस्क पर होलोमोर्फिक फलन f का वर्ग संतोषजनक होता है

यह वर्ग Hp एक सदिश समष्टि होता है। उपरोक्त असमानता के बाईं ओर की संख्या f के लिए हार्डी स्पेस p-मानदंड होता है, जिसे द्वारा प्रदर्शित किया गया है जब पी ≥ 1, लेकिन नहीं जब 0<पी<1 होता है तो यह एक मानक होता है

अंतरिक्ष एच को मानक के साथ, डिस्क पर बंधे हुए होलोमोर्फिक फलन के वेक्टर स्थान के रूप में परिभाषित किया गया है

0 < p ≤ q ≤ ∞ के लिए, वर्ग HqH का एक उपसमुच्चय हैपी, और एचपी-मानदंड पी के साथ बढ़ रहा है (यह होल्डर की असमानता का परिणाम है कि एलपी-प्रायिकता स्थान के लिए मानदंड बढ़ रहा है, यानी कुल द्रव्यमान 1 के साथ माप (गणित)

यूनिट सर्कल पर हार्डी रिक्त स्थान

पूर्ववर्ती अनुभाग में परिभाषित हार्डी रिक्त स्थान को जटिल एलपी स्पेस|एल के कुछ बंद वेक्टर उपस्थानों के रूप में भी देखा जा सकता है।यूनिट सर्कल पर पी रिक्त स्थान। यह कनेक्शन निम्नलिखित प्रमेय द्वारा प्रदान किया गया है (Katznelson 1976, Thm 3.8): दिया गया f ∈ Hपी, पी ≥ 1 के साथ, रेडियल सीमा

लगभग हर θ के लिए मौजूद है। कार्यक्रम एल का हैपीयूनिट सर्कल के लिए जगह,[clarification needed] और एक के पास वह है

इकाई वृत्त को T, और H द्वारा निरूपित करनाp('T') L का सदिश उपसमष्टिp('T') जिसमें सभी सीमा कार्य सम्मलितहैं , जब f, H में भिन्न होता हैp, तो किसी के पास p ≥ 1 के लिए वह है,(Katznelson 1976)

जहां ĝ(n) यूनिट सर्कल पर इंटीग्रेबल फलन जी के फूरियर गुणांक हैं,

अंतरिक्ष एचp('T') L का एक बंद उपस्थान हैपी('टी'). चूंकि एलp('T') एक बनच स्थान है (1 ≤ p ≤ ∞ के लिए), तो H भी हैपी('टी').

उपरोक्त को पलटा जा सकता है। एक फलन दिया गया , पी ≥ 1 के साथ, कोई पॉइसन कर्नेल पी के माध्यम से यूनिट डिस्क पर एक (हार्मोनिक फलन ) फलन f पुनः प्राप्त कर सकता हैr:

और f, H से संबंधित हैपी बिल्कुल कब एच में हैपी('टी'). माना जा रहा है कि एच में है('T'), यानी कि फूरियर गुणांक है (एn)nZ के साथn= 0 प्रत्येक n <0 के लिए, फिर हार्डी स्पेस एच का तत्व fसे संबद्ध होलोमोर्फिक फलन है

अनुप्रयोगों में, लुप्त हो रहे नकारात्मक फूरियर गुणांक वाले उन कार्यों को आमतौर पर कारण समाधान के रूप में व्याख्या किया जाता है।[clarification needed] इस प्रकार, अंतरिक्ष एच2को स्वाभाविक रूप से L के अंदर बैठा हुआ देखा जाता है2स्थान, और एन द्वारा अनुक्रमित अनंत अनुक्रमों द्वारा दर्शाया गया है; जबकि एल2 में Z द्वारा अनुक्रमित द्वि-अनंत अनुक्रम सम्मलितहैं।

सर्कल पर वास्तविक हार्डी रिक्त स्थान से कनेक्शन

जब 1 ≤ p < ∞, वास्तविक हार्डी स्थान H होता हैपीने आगे चर्चा की इस आलेख में वर्तमान संदर्भ में वर्णन करना आसान है। यूनिट सर्कल पर एक वास्तविक फलन f वास्तविक हार्डी स्पेस एच से संबंधित हैp('T') यदि यह H में किसी फलन का वास्तविक हिस्सा हैp('T'), और एक जटिल फलन f वास्तविक हार्डी स्पेस से संबंधित है यदि Re(f) और Im(f) स्पेस से संबंधित हैं (नीचे वास्तविक हार्डी स्पेस पर अनुभाग देखें)। इस प्रकार 1 ≤ p < ∞ के लिए, वास्तविक हार्डी स्पेस में हार्डी स्पेस सम्मलितहै, लेकिन यह बहुत बड़ा है, क्योंकि फलन के वास्तविक और काल्पनिक भाग के बीच कोई संबंध नहीं लगाया गया है।

0 <p <1 के लिए, फूरियर गुणांक, पॉइसन इंटीग्रल, संयुग्म फलन जैसे उपकरण अब मान्य नहीं हैं। उदाहरण के लिए, फलन पर विचार करें

तब F, H में हैप्रत्येक 0 < p < 1 और रेडियल सीमा के लिए p

एई के लिए मौजूद है θ और H में हैp('T'), लेकिन Re(f) लगभग हर जगह 0 है, इसलिए Re(f) से F को पुनर्प्राप्त करना अब संभव नहीं है। इस उदाहरण के परिणामस्वरूप, कोई देखता है कि 0 < p < 1 के लिए, कोई वास्तविक-H का वर्णन नहीं कर सकता हैp('T') (नीचे परिभाषित) ऊपर दिए गए सरल तरीके से, लेकिन अधिकतम फलन का उपयोग करके वास्तविक परिभाषा का उपयोग करना चाहिए, जो नीचे कहीं और दिया गया है।

समान फलन F के लिए, मान लीजिए fr(यह है) = F(re). सीमा जब r → Re(f) का 1r), सर्कल पर वितरण (गणित) के अर्थ में, z = 1 पर डिराक वितरण का एक गैर-शून्य गुणक है। यूनिट सर्कल के एक बिंदु पर डिराक वितरण वास्तविक-एच से संबंधित हैप्रत्येक p <1 के लिए p('T') (नीचे देखें)।

आंतरिक और बाहरी कार्यों में गुणनखंडीकरण (ब्यूर्लिंग)

0 <p ≤ ∞ के लिए, H में प्रत्येक गैर-शून्य फलन fp को उत्पाद f = Gh के रूप में लिखा जा सकता है जहां G एक बाहरी फलन है और h एक आंतरिक फलन है, जैसा कि नीचे परिभाषित किया गया है (Rudin 1987, Thm 17.17). यह अर्ने बर्लिंग फ़ैक्टराइज़ेशन हार्डी स्पेस को आंतरिक और बाहरी कार्यों के स्थानों द्वारा पूरी तरह से चित्रित करने की अनुमति देता है।[1][2] एक का कहना है कि G(z) यदि यह रूप लेता है तो यह एक बाहरी (बाहरी) कार्य है

|c| के साथ कुछ सम्मिश्र संख्या c के लिए = 1, और कुछ सकारात्मक मापनयोग्य फलन यूनिट सर्कल पर इस प्रकार वृत्त पर समाकलनीय है। विशेषकर, जब वृत्त पर पूर्णांक है, G, H में है1क्योंकि उपरोक्त पॉइसन कर्नेल का रूप लेता है (Rudin 1987, Thm 17.16). इसका अर्थ यह है कि

लगभग हर θ के लिए।

कोई कहता है कि h एक 'आंतरिक (आंतरिक) कार्य' है यदि और केवल यदि |h| ≤ 1 यूनिट डिस्क और सीमा पर

लगभग सभी θ के लिए मौजूद है और इसका निरपेक्ष मान 1 ae के बराबर है। विशेष रूप से, h, H में है.आंतरिक कार्य को आगे ब्लाश्के उत्पाद से जुड़े एक रूप में सम्मलितकिया जा सकता है।

फलन f, f = Gh के रूप में विघटित होता है, एच में हैp यदि और केवल यदि φ L से संबंधित हैp('T'), जहां φ बाहरी फलन G के प्रतिनिधित्व में सकारात्मक फलन है।

मान लीजिए कि G एक बाहरी फलन है जिसे वृत्त पर एक फलन φ से ऊपर दर्शाया गया है। φ को φ से प्रतिस्थापित करनाα, α > 0, एक परिवार (जीα) बाहरी कार्यों को गुणों के साथ प्राप्त किया जाता है:

जी1= जी, जीα+β = जीαजीβऔर |जीα| = |जी|αसर्कल पर लगभग हर जगह।

इसका तात्पर्य यह है कि जब भी 0 < p, q, r < ∞ और 1/r = 1/p + 1/q, H में प्रत्येक फलन fr को H में किसी फलन के उत्पाद के रूप में व्यक्त किया जा सकता हैपीऔर एच में एक फलन क्यू. उदाहरण के लिए: H में प्रत्येक फलन 1H में दो कार्यों का उत्पाद है2; एच में प्रत्येक फलन p, p <1, को कुछ H में कई कार्यों के उत्पाद के रूप में व्यक्त किया जा सकता हैक्यू, क्यू> 1.

यूनिट सर्कल पर वास्तविक-परिवर्तनीय तकनीक

वास्तविक-परिवर्तनीय तकनीकें, मुख्य रूप से 'आर' पर परिभाषित वास्तविक हार्डी रिक्त स्थान के अध्ययन से जुड़ी हैंn (नीचे देखें), सर्कल के सरल ढांचे में भी उपयोग किया जाता है। इन वास्तविक स्थानों में जटिल कार्यों (या वितरण) की अनुमति देना एक आम बात है। निम्नलिखित परिभाषा वास्तविक या जटिल मामले के बीच अंतर नहीं करती है।

चलो पीrयूनिट सर्कल 'टी' पर पॉइसन कर्नेल को निरूपित करें। यूनिट सर्कल पर वितरण f के लिए, सेट करें

जहां तारा वितरण f और फलन ई के बीच कनवल्शन को इंगित करता है → पीr(θ) वृत्त पर। अर्थात्, (f * Pr)(यह है) C पर f की क्रिया का परिणाम है-फलन को यूनिट सर्कल पर परिभाषित किया गया है

0 < p < ∞ के लिए, वास्तविक हार्डी स्पेस Hp('T') में वितरण f इस प्रकार सम्मलितहै कि M f L में हैपी('टी').

फलन F को यूनिट डिस्क पर F(re) द्वारा परिभाषित किया गया है) = (f * Pr)(यह है) हार्मोनिक है, और M f F का रेडियल अधिकतम फलन है। जब M f L से संबंधित हैp('T') और p ≥ 1, वितरण f L में एक फलन हैp('T'), अर्थात् F का सीमा मान। p ≥ 1 के लिए, वास्तविक हार्डी स्पेस Hp('T') L का उपसमुच्चय हैपी('टी').

संयुग्मी फलन

इकाई वृत्त पर प्रत्येक वास्तविक त्रिकोणमितीय बहुपद u के साथ, कोई वास्तविक संयुग्म बहुपद v को इस प्रकार जोड़ता है कि u + iv इकाई डिस्क में एक होलोमोर्फिक फलन तक विस्तारित होता है,

यह मैपिंग यू → वी एल पर एक बंधे हुए रैखिक ऑपरेटर एच तक फैली हुई हैp('T'), जब 1 < p < ∞ (एक अदिश गुणज तक, यह इकाई वृत्त पर हिल्बर्ट रूपांतरण है), और H भी L को मैप करता है1(T) से Lp स्पेस#Weak Lp|weak-L1(टी). जब 1 ≤ पी < ∞, तो यूनिट सर्कल पर वास्तविक मूल्य पूर्णांक फलन f के लिए निम्नलिखित समतुल्य हैं:

  • फलन f कुछ फलन gH का वास्तविक भाग हैपी('टी')
  • फलन f और इसका संयुग्म H(f) L से संबंधित हैंपी('टी')
  • रेडियल अधिकतम फलन M f L से संबंधित हैपी('टी').

जब 1 < p < ∞, H(f) L से संबंधित होता हैp('T') जब f ∈ Lपी('टी'), इसलिए वास्तविक हार्डी स्पेस एचp('T') L से मेल खाता हैइस मामले में p('T')। पी = 1 के लिए, वास्तविक हार्डी स्पेस एच1(T) L का एक उचित उपसमष्टि है1(टी).

पी = ∞ के मामले को वास्तविक हार्डी स्पेस की परिभाषा से बाहर रखा गया था, क्योंकि एल का अधिकतम फलन एम fफलन हमेशा सीमित होता है, और क्योंकि यह वांछनीय नहीं है कि वास्तविक-HL के बराबर हो. हालाँकि, निम्नलिखित दो गुण वास्तविक मूल्यवान फलन f के लिए समतुल्य हैं

  • फलन f कुछ फलन g ∈ H का वास्तविक भाग है(टी)
  • फलन f और इसका संयुग्म H(f) L से संबंधित है(टी).

=== 0 <पी <1 === के लिए वास्तविक हार्डी रिक्त स्थान जब 0 < p < 1, H में एक फलन F होता हैपी को L की उत्तलता की कमी के कारण, वृत्त पर इसके सीमा सीमा फलन के वास्तविक भाग से पुनर्निर्मित नहीं किया जा सकता हैइस मामले में पी. उत्तलता विफल हो जाती है लेकिन एक प्रकार की जटिल उत्तलता बनी रहती है, अर्थात् तथ्य यह है कि z → |z|q प्रत्येक q > 0 के लिए जटिल तल में सबहार्मोनिक फलन # सबहार्मोनिक फलन है। परिणामस्वरूप, यदि

एच में हैपी, यह दिखाया जा सकता है कि सीn= ओ(एन1/p–1). यह फूरियर श्रृंखला का अनुसरण करता है

यूनिट सर्कल पर वितरण f के वितरण के अर्थ में अभिसरण होता है, और f (रे)।) =(f ∗ Pr)(θ). फलन F ∈ Hp को वृत्त पर वास्तविक वितरण Re(f) से पुनर्निर्मित किया जा सकता है, क्योंकि टेलर गुणांक cnF की गणना Re(f) के फूरियर गुणांक से की जा सकती है।

पी <1 होने पर हार्डी रिक्त स्थान को संभालने के लिए सर्कल पर वितरण पर्याप्त सामान्य हैं। जो वितरण फलन नहीं हैं वे होते हैं, जैसा कि फलन f (जेड) = (1−जेड) के साथ देखा जाता है−N (|z| <1 के लिए), जो H से संबंधित हैp जब 0 < N p < 1 (और N एक पूर्णांक ≥ 1) हो।

वृत्त पर वास्तविक वितरण वास्तविक-एच से संबंधित हैp('T') यदि यह कुछ F ∈ H के वास्तविक भाग का सीमा मान है. एक डिराक वितरण डीx, यूनिट सर्कल के किसी भी बिंदु x पर, वास्तविक-एच से संबंधित हैp('T') प्रत्येक p < 1 के लिए; व्युत्पन्न δ'x संबंधित जब पी < 1/2, दूसरा व्युत्पन्न δx जब पी <1/3, इत्यादि।

ऊपरी आधे तल के लिए कठोर स्थान

डिस्क के अलावा अन्य डोमेन पर हार्डी स्पेस को परिभाषित करना संभव है, और कई अनुप्रयोगों में एक जटिल आधे-तल (आमतौर पर दायां आधा-तल या ऊपरी आधा-तल) पर हार्डी रिक्त स्थान का उपयोग किया जाता है।

हार्डी स्पेस एचपी('एच') ऊपरी आधे तल पर 'एच' को सीमित मानदंड के साथ 'एच' पर होलोमोर्फिक फलन f की जगह के रूप में परिभाषित किया गया है, मानदंड द्वारा दिया जा रहा है

संगत एच(H) को दिए गए मानदंड के साथ, बंधे हुए मानदंड के कार्यों के रूप में परिभाषित किया गया है

हालाँकि यूनिट डिस्क डी और ऊपरी आधे-प्लेन एच को मोबियस ट्रांसफॉर्मेशन के माध्यम से एक दूसरे से मैप किया जा सकता है, वे विनिमेय नहीं हैं हार्डी स्पेस के लिए डोमेन के रूप में। इस अंतर में योगदान देने वाला तथ्य यह है कि इकाई वृत्त में परिमित (एक-आयामी) लेब्सेग माप होता है जबकि वास्तविक रेखा में ऐसा नहीं होता है। हालाँकि, H वर्ग|H के लिए2, किसी के पास निम्नलिखित प्रमेय है: यदि m : 'D' → 'H' मोबियस परिवर्तन को दर्शाता है

फिर रैखिक संकारक M : H2(H) → H2(D) द्वारा परिभाषित

हिल्बर्ट रिक्त स्थान की एक समरूपता समरूपता है।

आर के लिए वास्तविक हार्डी रिक्त स्थानn

वास्तविक सदिश समष्टि 'R' पर विश्लेषण मेंn, हार्डी स्पेस एचp (0 < p ≤ ∞ के लिए) में वितरण (गणित)#टेम्पर्ड वितरण और फूरियर रूपांतरण सम्मलितहैं f ऐसा है कि कुछ श्वार्ट्ज फलन के लिए Φ ∫Φ = 1 के साथ, अधिकतम फलन

एल में हैपी('आर'n), जहां ∗ कनवल्शन है और Φt(x) = t −nΦ(x / t). एचp-quasinorm ||f ||Hp एच के वितरण f काp को L के रूप में परिभाषित किया गया हैपीएम का मानदंडΦf (यह Φ की पसंद पर निर्भर करता है, लेकिन श्वार्ट्ज फलन के विभिन्न विकल्प Φ समकक्ष मानदंड देते हैं)। एचp-quasinorm एक मानक है जब p ≥ 1, लेकिन नहीं जब p <1.

यदि 1 < p < ∞, हार्डी स्पेस Hp L के समान ही सदिश समष्टि हैपी, समतुल्य मानदंड के साथ। जब p = 1, हार्डी स्पेस H1L का एक उचित उपसमष्टि है1. कोई एच में अनुक्रम पा सकता है1जो L में परिबद्ध हैं1लेकिन H में अनबाउंड1, उदाहरण के लिए लाइन पर

एल1और एच1मानदंड H पर समतुल्य नहीं हैं1, और एच1एल में बंद नहीं है1. एच का द्वैत1परिबद्ध माध्य दोलन के कार्यों का स्थान बीएमओ है। अंतरिक्ष बीएमओ में असीमित कार्य सम्मलितहैं (फिर से साबित होता है कि एच1एल में बंद नहीं है1).

यदि p<1 तो हार्डी स्पेस Hp में ऐसे तत्व हैं जो फलन नहीं हैं, और यह दोहरा है क्रम n(1/p − 1) का सजातीय लिप्सचिट्ज़ स्थान है। जब पी <1, एचपी-क्वासिनोर्म कोई मानक नहीं है, क्योंकि यह सबएडिटिव नहीं है। pth शक्ति ||f ||Hpp < 1 के लिए p उप-योगात्मक है और इसलिए यह हार्डी स्पेस H पर एक मीट्रिक को परिभाषित करता हैp, जो टोपोलॉजी को परिभाषित करता है और H बनाता हैपूर्ण मीट्रिक स्थान में p

परमाणु अपघटन

जब 0 < पी ≤ 1, कॉम्पैक्ट सपोर्ट का एक घिरा मापनीय फलन f हार्डी स्पेस एच में हैपीयदि और केवल यदि इसके सभी क्षण

मैं किसका आदेश1+ ... +मैंnअधिकतम n(1/p − 1) है, गायब हो जाता है। उदाहरण के लिए, f का समाकलन इस क्रम में लुप्त हो जाना चाहिए कि f ∈ Hp, 0 < p ≤ 1, और जब तक p > n / (n+1)यह भी पर्याप्त है.

यदि इसके अतिरिक्त f को किसी गेंद B में समर्थन प्राप्त है और वह |B| से घिरा हुआ है−1/p तो f को 'H' कहा जाता हैp-atom' (यहाँ |B| 'R' में B के यूक्लिडियन आयतन को दर्शाता हैn). एचपी-एक मनमाना एच का क्वासिनोर्मp-परमाणु केवल p और श्वार्ट्ज फलन Φ के आधार पर एक स्थिरांक से घिरा होता है।

जब 0 < p ≤ 1, H का कोई तत्व fp में H के अभिसरण अनंत संयोजन के रूप में 'परमाणु अपघटन' हैपी-परमाणु,

जहां एjएच हैंपी-परमाणु और सीjअदिश हैं.

उदाहरण के लिए, डिराक वितरण का अंतर f = δ है1-डी0 एच में अभिसरण हार तरंगिका की एक श्रृंखला के रूप में दर्शाया जा सकता हैp-quasinorm जब 1/2 < p < 1 (सर्कल पर, संबंधित प्रतिनिधित्व 0 < p < 1 के लिए मान्य है, लेकिन लाइन पर, Haar फलन H से संबंधित नहीं हैंp जब p ≤ 1/2 क्योंकि उनका अधिकतम कार्य अनंत पर a x के बराबर है−2 कुछ के लिए a ≠ 0).

मार्टिंगेल एच

मुझेn)n≥0 σ-फ़ील्ड (Σ) के बढ़ते अनुक्रम के संबंध में, कुछ संभाव्यता स्थान (Ω, Σ, P) पर मार्टिंगेल (संभावना सिद्धांत) बनेंn)n≥0. सरलता के लिए मान लें कि Σ अनुक्रम (Σ) द्वारा उत्पन्न σ-फ़ील्ड के बराबर हैn)n≥0. मार्टिंगेल के अधिकतम कार्य को परिभाषित किया गया है

माना 1 ≤ p < ∞. मार्टिंगेल (एमn)n≥0 मार्टिंगेल-एच से संबंधित हैपीजब एम* ∈ एल.

यदि एम* ∈ एलपी, मार्टिंगेल (एमn)n≥0 एल में परिबद्ध है; इसलिए यह लगभग निश्चित रूप से डूब के मार्टिंगेल अभिसरण प्रमेय द्वारा किसी फलन f में परिवर्तित हो जाता है। इसके अलावा, एमnएल में f में परिवर्तित हो जाता हैपी-प्रमुख अभिसरण प्रमेय द्वारा मानदंड; इसलिए एमnΣ पर f की सशर्त अपेक्षा के रूप में व्यक्त किया जा सकता हैn. इस प्रकार मार्टिंगेल-एच की पहचान करना संभव हैpL की उपसमष्टि के साथपी(Ω, Σ, पी) उन f से मिलकर बनता है जैसे कि मार्टिंगेल

मार्टिंगेल-एच से संबंधित है.

डूब की मार्टिंगेल असमानता|डूब की अधिकतम असमानता का तात्पर्य है कि मार्टिंगेल-एचपीएल के साथ मेल खाता हैp(Ω, Σ, P) जब 1 < p < ∞. दिलचस्प जगह मार्टिंगेल-एच है1, जिसका द्वैत मार्टिंगेल-बीएमओ है (Garsia 1973).

बर्कहोल्डर-गंडी असमानताएं (जब पी>1) और बर्गेस डेविस असमानता (जब पी = 1) एल से संबंधित हैंपी-मार्टिंगेल के वर्ग फलन के अधिकतम फलन का मानदंड

मार्टिंगेल-एचp को यह कहकर परिभाषित किया जा सकता है कि S(f)∈ L (Garsia 1973).

निरंतर समय पैरामीटर वाले मार्टिंगेल्स पर भी विचार किया जा सकता है। शास्त्रीय सिद्धांत के साथ सीधा संबंध जटिल वीनर प्रक्रिया (बी) के माध्यम से प्राप्त किया जाता हैt) जटिल तल में, समय t = 0 पर बिंदु z = 0 से शुरू करते हुए। मान लीजिए कि यूनिट सर्कल के हिटिंग समय को दर्शाया गया है। यूनिट डिस्क में प्रत्येक होलोमोर्फिक फलन F के लिए,

एक मार्टिंगेल है, जो मार्टिंगेल-एच से संबंधित हैपी iff f ∈ एच (Burkholder, Gundy & Silverstein 1971).

उदाहरण: डायडिक मार्टिंगेल-एच1

इस उदाहरण में, Ω = [0, 1] और Σn [0,1] से 2 के डायडिक विभाजन द्वारा उत्पन्न परिमित क्षेत्र हैnलंबाई के अंतराल 2−n, प्रत्येक n ≥ 0 के लिए। यदि [0, 1] पर एक फलन f को Haar तरंगिका (h) पर इसके विस्तार द्वारा दर्शाया जाता हैk)

फिर मार्टिंगेल-एच1f के मानदंड को L द्वारा परिभाषित किया जा सकता है1वर्ग फलन का मानदंड

यह स्थान, कभी-कभी एच द्वारा दर्शाया जाता है1(δ), शास्त्रीय वास्तविक H का समरूपी हैवृत्त पर 1स्थान (Müller 2005). बाल प्रणाली एच के लिए कंपकंपी का आधार है1(डी).

टिप्पणियाँ

  1. Beurling, Arne (1948). "हिल्बर्ट अंतरिक्ष में रैखिक परिवर्तनों से संबंधित दो समस्याओं पर". Acta Mathematica. 81: 239–255. doi:10.1007/BF02395019.
  2. Voichick, Michael; Zalcman, Lawrence (1965). "रीमैन सतहों पर आंतरिक और बाहरी कार्य". Proceedings of the American Mathematical Society. 16 (6): 1200–1204. doi:10.1090/S0002-9939-1965-0183883-1.


संदर्भ