वैकल्पिक भाज्य
This article includes a list of references, related reading or external links, but its sources remain unclear because it lacks inline citations. (September 2021) (Learn how and when to remove this template message) |
गणित में, एक प्रत्यावर्ती भाज्य सकारात्मक पूर्णांकों के पहले n भाज्य के प्रत्यावर्ती योग का निरपेक्ष मान है।
यह उनके योग के समान है, यदि n समता (गणित) है, तो समता (गणित)-अनुक्रमित भाज्य को -1 (संख्या)|−1 से गुणा किया जाता है, और सम-अनुक्रमित भाज्य को −1 से गुणा किया जाता है यदि एन विषम है, जिसके परिणामस्वरूप सारांश के संकेतों में परिवर्तन होता है (या यदि पसंदीदा हो तो जोड़ और घटाव ऑपरेटरों का विकल्प)। इसे बीजगणितीय रूप से कहें तो,
या पुनरावृत्ति संबंध के साथ
जिसमें af(1) = 1.
पहले कुछ वैकल्पिक फैक्टोरियल हैं
- 1 (संख्या), 1, 5 (संख्या), 19 (संख्या), 101 (संख्या), 619, 4421, 35899, 326981, 3301819, 36614981, 442386619, 5784634181, 81393657019 (sequence A005165 in the OEIS)
उदाहरण के लिए, तीसरा वैकल्पिक भाज्य 1 है! – 2! +3!. चौथा प्रत्यावर्ती भाज्य −1 है! + 2! −3! + 4! = 19. n की समता (गणित) के बावजूद, अंतिम (nवें) सारांश, n! को एक सकारात्मक संकेत दिया गया है, (n – 1)वें सारांश को एक नकारात्मक संकेत दिया गया है, और निचले के संकेत- अनुक्रमित सारांशों को तदनुसार वैकल्पिक किया जाता है।
प्रत्यावर्तन का यह पैटर्न सुनिश्चित करता है कि परिणामी योग सभी सकारात्मक पूर्णांक हैं। नियम को बदलने से ताकि विषम या सम-अनुक्रमित योगों को नकारात्मक संकेत दिए जाएं (एन की समता की परवाह किए बिना) परिणामी योगों के संकेतों को बदल देता है, लेकिन उनके पूर्ण मूल्यों को नहीं।
मियोड्रैग ज़िवकोविच ने 1999 में सिद्ध किया कि प्रत्यावर्ती भाज्यों की केवल एक सीमित संख्या होती है जो अभाज्य संख्याएँ भी होती हैं, क्योंकि 3612703 भाजक af(3612702) है और इसलिए सभी n ≥ 3612702 के लिए af(n) को विभाजित करता है। As of 2006[update], ज्ञात अभाज्य और संभावित अभाज्य संख्याएं af(n) हैं (sequence A001272 in the OEIS)
- एन = 3, 4, 5, 6, 7, 8, 10, 15, 19, 41, 59, 61, 105, 160, 661, 2653, 3069, 3943, 4053, 4998, 8275, 9158, 11164
2006 में केवल n = 661 तक के मान ही अभाज्य साबित हुए हैं। af(661) लगभग 7.818097272875× 10 है1578.