Revision as of 00:13, 4 July 2023 by alpha>Indicwiki(Created page with "{{Short description|Mathematical operation}} गणित में, मेलिन परिवर्तन एक अभिन्न परिवर्तन है ज...")
संकेतन से पता चलता है कि यह जटिल विमान में एक ऊर्ध्वाधर रेखा पर लिया गया एक अभिन्न अंग है, जिसका वास्तविक भाग सी को केवल हल्की निचली सीमा को संतुष्ट करने की आवश्यकता है। वे स्थितियाँ जिनके अंतर्गत यह व्युत्क्रम मान्य है, मेलिन व्युत्क्रम प्रमेय में दी गई हैं।
इस परिवर्तन का नाम फिनलैंड के गणितज्ञ हजलमार मेलिन के नाम पर रखा गया है, जिन्होंने 1897 में एक्टा सोसाइटीस साइंटिअरम फेनिकी में प्रकाशित एक पेपर में इसे पेश किया था।[1]
दो-तरफा लाप्लास परिवर्तन को मेलिन परिवर्तन के संदर्भ में परिभाषित किया जा सकता है
और इसके विपरीत हम दो-तरफा लाप्लास परिवर्तन से मेलिन परिवर्तन प्राप्त कर सकते हैं
मेलिन ट्रांसफ़ॉर्म को कर्नेल x का उपयोग करके एकीकृत करने के रूप में सोचा जा सकता हैगुणात्मक हार माप के संबंध में,
, जो अपरिवर्तनीय है
फैलाव के अंतर्गत , ताकि
दो तरफा लाप्लास परिवर्तन योगात्मक हार माप के संबंध में एकीकृत होता है , जो कि अनुवाद अपरिवर्तनीय है, इसलिए .
हम फूरियर परिवर्तन को मेलिन परिवर्तन और इसके विपरीत के संदर्भ में भी परिभाषित कर सकते हैं; मेलिन परिवर्तन और ऊपर परिभाषित दो-तरफा लाप्लास परिवर्तन के संदर्भ में
हम प्रक्रिया को उलट भी सकते हैं और प्राप्त कर सकते हैं
मेलिन ट्रांसफॉर्म को गुणन के साथ सकारात्मक वास्तविक संख्याओं के स्थानीय रूप से कॉम्पैक्ट एबेलियन समूह के कनवल्शन बीजगणित के लिए गेलफैंड परिवर्तन के रूप में भी देखा जा सकता है।
उदाहरण
काहेन-मेलिन इंटीग्रल
फ़ंक्शन का मेलिन रूपांतरण है
कहाँ गामा फ़ंक्शन है. सरल शून्य और ध्रुवों वाला एक मेरोमोर्फिक फ़ंक्शन है .[2] इसलिए, के लिए विश्लेषणात्मक है . इस प्रकार, देना और मुख्य शाखा पर, उलटा परिवर्तन देता है
.
इस अभिन्न अंग को काहेन-मेलिन अभिन्न अंग के रूप में जाना जाता है।[3]
बहुपद फलन
तब से के किसी भी मूल्य के लिए अभिसरण नहीं है , मेलिन परिवर्तन को संपूर्ण सकारात्मक वास्तविक अक्ष पर परिभाषित बहुपद कार्यों के लिए परिभाषित नहीं किया गया है। हालाँकि, वास्तविक अक्ष के विभिन्न खंडों पर इसे शून्य के रूप में परिभाषित करके, मेलिन परिवर्तन लेना संभव है। उदाहरण के लिए, यदि
तब
इस प्रकार पर एक साधारण पोल है और इस प्रकार परिभाषित किया गया है . इसी प्रकार, यदि
तब
इस प्रकार पर एक साधारण पोल है और इस प्रकार परिभाषित किया गया है .
घातांकीय फलन
के लिए , होने देना . तब
ज़ेटा फ़ंक्शन
रीमैन ज़ेटा फ़ंक्शन के लिए मूलभूत सूत्रों में से एक का उत्पादन करने के लिए मेलिन ट्रांसफॉर्म का उपयोग करना संभव है, . होने देना . तब
के लिए , पट्टी खुली रहने दो सभी के रूप में परिभाषित किया जाए ऐसा है कि साथ की मौलिक पट्टी इसे सबसे बड़ी खुली पट्टी के रूप में परिभाषित किया गया है जिस पर इसे परिभाषित किया गया है। उदाहरण के लिए, के लिए की मौलिक पट्टी
है जैसा कि इस उदाहरण से देखा जा सकता है, फ़ंक्शन के एसिम्प्टोटिक्स जैसे इसकी मौलिक पट्टी के बाएं समापन बिंदु और फ़ंक्शन के स्पर्शोन्मुखता को इस प्रकार परिभाषित करें इसके सही समापन बिंदु को परिभाषित करें। बिग ओ अंकन का उपयोग करके संक्षेप में बताएं, यदि है जैसा और जैसा तब पट्टी में परिभाषित किया गया है [5]
इसका एक अनुप्रयोग गामा फ़ंक्शन में देखा जा सकता है, तब से है जैसा और सभी के लिए तब पट्टी में परिभाषित किया जाना चाहिए जो इसकी पुष्टि करता है के लिए विश्लेषणात्मक है
गणित> \overline{z} </math> के जटिल संयुग्म को दर्शाता है गणित>जेड</गणित>.
, स्केलिंग
अभिन्न मौजूद होने पर ही मान्य है।
अभिन्न मौजूद होने पर ही मान्य है।
गुणक संवलन
गुणक संवलन (सामान्यीकृत)
गुणक संवलन (सामान्यीकृत)
गुणन. केवल तभी मान्य है जब अभिन्न मौजूद हो। उन स्थितियों के लिए नीचे पार्सेवल का प्रमेय देखें जो अभिन्न के अस्तित्व को सुनिश्चित करते हैं।
पारसेवल का प्रमेय और प्लांचरेल का प्रमेय
होने देना और कार्य अच्छी तरह से परिभाषित हों
मेलिन रूपांतरित होता है
मौलिक पट्टियों में .
होने देना साथ .
यदि कार्य और अंतराल पर वर्ग-पूर्णांक भी हैं , पारसेवल%27 प्रमेय|पारसेवल का सूत्र मानता है:
[6]
दाहिनी ओर एकीकरण ऊर्ध्वाधर रेखा के साथ किया जाता है वह
पूरी तरह से (उपयुक्त रूपांतरित) मूलभूत पट्टियों के ओवरलैप के भीतर स्थित है।
हम प्रतिस्थापित कर सकते हैं द्वारा . यह प्रमेय का निम्नलिखित वैकल्पिक रूप देता है:
होने देना और कार्य अच्छी तरह से परिभाषित हों
मेलिन रूपांतरित होता है
मौलिक पट्टियों में .
होने देना साथ और
चुनना साथ .
यदि कार्य और अंतराल पर वर्ग-पूर्णांक भी हैं , तो हमारे पास हैं
[7]
हम प्रतिस्थापित कर सकते हैं द्वारा .
यह निम्नलिखित प्रमेय देता है:
होने देना अच्छी तरह से परिभाषित मेलिन परिवर्तन के साथ एक फ़ंक्शन बनें
मौलिक पट्टी में .
होने देना साथ .
यदि फ़ंक्शन
अंतराल पर वर्ग-पूर्णांक भी है , फिर प्लांचरेल_प्रमेय|प्लांचरेल का प्रमेय मानता है:
[8]
एल पर एक आइसोमेट्री के रूप में2रिक्त स्थान
हिल्बर्ट स्थानों के अध्ययन में, मेलिन परिवर्तन को अक्सर थोड़े अलग तरीके से प्रस्तुत किया जाता है। में कार्यों के लिए (एलपी स्पेस देखें) मौलिक पट्टी हमेशा शामिल होती है , इसलिए हम एक रैखिक ऑपरेटर को परिभाषित कर सकते हैं जैसा
दूसरे शब्दों में, हमने सेट कर लिया है
इस ऑपरेटर को आमतौर पर केवल सादे द्वारा दर्शाया जाता है और मेलिन ट्रांसफॉर्म कहा जाता है, लेकिन इस लेख में अन्यत्र प्रयुक्त परिभाषा से अंतर करने के लिए यहां इसका उपयोग किया गया है। मेलिन व्युत्क्रम प्रमेय यह दर्शाता है व्युत्क्रम के साथ व्युत्क्रमणीय है
इसके अलावा, यह ऑपरेटर एक आइसोमेट्री है, यानी सभी के लिए (यह बताता है कि का कारक क्यों प्रयोग किया गया)।
संभाव्यता सिद्धांत में
संभाव्यता सिद्धांत में, यादृच्छिक चर के उत्पादों के वितरण का अध्ययन करने के लिए मेलिन परिवर्तन एक आवश्यक उपकरण है।[9] यदि X एक यादृच्छिक चर है, और X+ = max{X,0} इसके सकारात्मक भाग को दर्शाता है, जबकि X − = max{−X,0} इसका नकारात्मक भाग है, तो एक्स के मेलिन रूपांतरण को इस प्रकार परिभाषित किया गया है[10]
जहां γ एक औपचारिक अनिश्चित है γ2 = 1. यह परिवर्तन किसी जटिल पट्टी में सभी के लिए मौजूद है D = {s : a ≤ Re(s) ≤ b} , कहाँ a ≤ 0 ≤ b.[10]
मेलिन परिवर्तन एक यादृच्छिक चर X का वितरण फ़ंक्शन F विशिष्ट रूप से निर्धारित होता हैX.[10]संभाव्यता सिद्धांत में मेलिन परिवर्तन का महत्व इस तथ्य में निहित है कि यदि एक्स और वाई दो स्वतंत्र यादृच्छिक चर हैं, तो उनके उत्पाद का मेलिन परिवर्तन एक्स और वाई के मेलिन परिवर्तन के उत्पाद के बराबर है:[11]
बेलनाकार समन्वय प्रणाली में लाप्लासियन के साथ समस्याएं
लाप्लासियन में एक सामान्य आयाम में बेलनाकार निर्देशांक में (एक कोण और एक त्रिज्या और शेष लंबाई के साथ ऑर्थोगोनल निर्देशांक) हमेशा एक शब्द होता है:
उदाहरण के लिए, 2-डी ध्रुवीय निर्देशांक में लाप्लासियन है:
और 3-डी बेलनाकार निर्देशांक में लाप्लासियन है,
इस शब्द को मेलिन ट्रांसफॉर्म के साथ व्यवहार किया जा सकता है,[12] तब से:
उदाहरण के लिए, ध्रुवीय निर्देशांक में 2-डी लाप्लास समीकरण दो चर में पीडीई है:
और गुणन द्वारा:
त्रिज्या पर मेलिन परिवर्तन के साथ सरल हार्मोनिक थरथरानवाला बन जाता है:
सामान्य समाधान के साथ:
आइए अब उदाहरण के लिए मूल लाप्लास समीकरण में कुछ सरल वेज सीमा शर्तें लागू करें:
ये मेलिन परिवर्तन के लिए विशेष रूप से सरल हैं, बन रहे हैं:
समाधान पर लगाई गई ये शर्तें इसे विशिष्ट बनाती हैं:
अब मेलिन परिवर्तन के लिए कनवल्शन प्रमेय द्वारा, मेलिन डोमेन में समाधान को उलटा किया जा सकता है:
जहां निम्नलिखित व्युत्क्रम परिवर्तन संबंध नियोजित किया गया था:
कहाँ .
अनुप्रयोग
एल्गोरिदम के विश्लेषण के लिए कंप्यूटर विज्ञान में मेलिन ट्रांसफॉर्म का व्यापक रूप से उपयोग किया जाता है[13]इसके पैमाने की अपरिवर्तनशील संपत्ति के कारण। स्केल किए गए फ़ंक्शन के मेलिन ट्रांसफ़ॉर्म का परिमाण विशुद्ध रूप से काल्पनिक इनपुट के लिए मूल फ़ंक्शन के परिमाण के समान है। यह स्केल अपरिवर्तनीयता प्रॉपर्टी फूरियर ट्रांसफॉर्म की शिफ्ट इनवेरिएंस प्रॉपर्टी के अनुरूप है। समय-स्थानांतरित फ़ंक्शन के फूरियर रूपांतरण का परिमाण मूल फ़ंक्शन के फूरियर रूपांतरण के परिमाण के समान है।
यह गुण छवि पहचान में उपयोगी है। जब वस्तु को कैमरे की ओर या उससे दूर ले जाया जाता है तो किसी वस्तु की छवि आसानी से स्केल की जाती है।
क्वांटम यांत्रिकी और विशेष रूप से क्वांटम क्षेत्र सिद्धांत में, फूरियर स्थान बेहद उपयोगी है और बड़े पैमाने पर उपयोग किया जाता है क्योंकि गति और स्थिति एक दूसरे के फूरियर रूपांतरण हैं (उदाहरण के लिए, फेनमैन आरेख गति अंतरिक्ष में अधिक आसानी से गणना की जाती हैं)। 2011 में, ए. लियाम फिट्ज़पैट्रिक, जेरेड कपलान, जोआओ पेनेडोन्स, राज को लौटें और बाल्ट सी. वैन रीस ने दिखाया कि मेलिन स्पेस AdS/CFT पत्राचार के संदर्भ में एक समान भूमिका निभाता है।[14][15][16]
उदाहरण
पेरोन का सूत्र डिरिचलेट श्रृंखला पर लागू व्युत्क्रम मेलिन परिवर्तन का वर्णन करता है।
मेलिन ट्रांसफ़ॉर्म का उपयोग प्राइम-काउंटिंग फ़ंक्शन के विश्लेषण में किया जाता है और रीमैन ज़ेटा फ़ंक्शन की चर्चा में होता है।
व्युत्क्रम मेलिन परिवर्तन आमतौर पर रिज़्ज़ साधनों में होते हैं।
↑Bhimsen, Shivamoggi, Chapter 6: The Mellin Transform, par. 4.3: Distribution of a Potential in a Wedge, pp. 267–8
↑Philippe Flajolet and Robert Sedgewick. The Average Case Analysis of
Algorithms: Mellin Transform Asymptotics. Research Report 2956. 93 pages. Institut National de Recherche en Informatique et en Automatique (INRIA), 1996.
↑Jacqueline Bertrand, Pierre Bertrand, Jean-Philippe Ovarlez. The Mellin Transform. The Transforms
and Applications Handbook, 1995, 978-1420066524. ffhal-03152634f