एनुलस (गणित)

From Vigyanwiki
Revision as of 15:35, 13 July 2023 by alpha>Neeraja (added Category:Vigyan Ready using HotCat)
एक वलय
मैमिकॉन की दृश्य गणना पद्धति का चित्रण दर्शाता है कि समान कॉर्ड लंबाई वाले दो वलय के क्षेत्र आंतरिक और बाहरी त्रिज्या की परवाह किए बिना समान हैं।[1]

गणित में, एक वलय (बहुवचन वलय या वलय) दो संकेंद्रित वृत्तों के बीच का क्षेत्र है। अनौपचारिक रूप से, इसका आकार रिंग या हार्डवेयर वॉशर जैसा होता है। शब्द "एनुलस" लैटिन शब्द एनुलस या एनलस से लिया गया है जिसका अर्थ है 'छोटी अंगूठी'। विशेषण रूप वलयाकार (जैसा कि वलयाकार ग्रहण में होता है) होता है।

खुला वलय स्थलाकृतिक रूप से खुले सिलेंडर S1 × (0,1) और छिद्रित तल दोनों के बराबर है।

क्षेत्रफल

वलय का क्षेत्रफल त्रिज्या R के बड़े वृत्त और त्रिज्या r के छोटे वृत्त के क्षेत्रफल का अंतर है:

जीवा सूत्र के परिणाम के रूप में, प्रत्येक इकाई उत्तल नियमित बहुभुज के परिवृत्त और अंतःवृत्त से घिरा क्षेत्र है π/4

वलय का क्षेत्रफल वलय के अन्दर सबसे लंबी रेखा खंड की लंबाई से निर्धारित होता है, जो संलग्न चित्र में आंतरिक वृत्त, 2d की स्पर्शरेखा (ज्यामिति) है। इसे पाइथागोरस प्रमेय का उपयोग करके दिखाया जा सकता है क्योंकि यह रेखा छोटे वृत्त की स्पर्शरेखा है और उस बिंदु पर इसकी त्रिज्या के लंबवत है, इसलिए d और r कर्ण R के साथ एक समकोण त्रिभुज की भुजाएँ हैं, और वलय का क्षेत्रफल इसके द्वारा दिया गया है

क्षेत्र को कैलकुलस के माध्यम से भी प्राप्त किया जा सकता है, जिसमें वलय को अनंत चौड़ाई वाले और क्षेत्रफल ρ dρ की अनंत संख्या में विभाजित किया जाता है और फिर ρ = r से ρ = R तक एकीकृत किया जाता है:

रेडियन में मापे गए θ के साथ कोण θ के वलय क्षेत्र का क्षेत्रफल इस प्रकार दिया गया है


जटिल संरचना

जटिल विश्लेषण में एक वलय ann(a; r, R) संमिश्र तल में एक खुला क्षेत्र है जिसे इस प्रकार परिभाषित किया गया है

यदि r 0 है, तो क्षेत्र को बिंदु a के चारों ओर त्रिज्या R की पंचर डिस्क (केंद्र में एक बिंदु (गणित) छेद वाली डिस्क (गणित)) के रूप में जाना जाता है।

जटिल तल के उपसमुच्चय के रूप में, एक वलय को रीमैन सतह के रूप में माना जा सकता है। वलय की जटिल संरचना केवल अनुपात r/R पर निर्भर करती है। प्रत्येक वलय ann(a; r, R) को मैप द्वारा मूल पर केंद्रित और बाहरी त्रिज्या 1 के साथ एक मानक पर होलोमोर्फिक फलन रूप से मैप किया जा सकता है।

आंतरिक त्रिज्या तब r/R < 1 है।

हैडामर्ड तीन-वृत्त प्रमेय एक वलय के अंदर एक होलोमोर्फिक फलन द्वारा लिए जा सकने वाले अधिकतम मान के बारे में एक कथन है।

जौकोव्स्की परिवर्तन अनुरूप रूप से केन्द्रों के बीच एक स्लिट कट के साथ एक दीर्घवृत्त पर एक वलय को माप करता है।

यह भी देखें

संदर्भ

  1. Haunsperger, Deanna; Kennedy, Stephen (2006). The Edge of the Universe: Celebrating Ten Years of Math Horizons. ISBN 9780883855553. Retrieved 9 May 2017.


बाहरी संबंध