अलेक्जेंड्रोफ़ विस्तारण
टोपोलॉजी के गणितीय क्षेत्र में, अलेक्जेंड्रोफ़ विस्तारक `एक एकल बिंदु से सटे हुए एक गैर-सघन टोपोलॉजिकल स्थान को इस तरह से विस्तारित करने का एक विधि है कि परिणामी स्थान सघन हो। इसका नाम रूसी गणितज्ञ पावेल अलेक्जेंड्रोफ़ के नाम पर रखा गया है। अधिक स्पष्ट रूप से, मान लीजिए कि X एक टोपोलॉजिकल स्थान है। फिर X का अलेक्जेंड्रॉफ विस्तारक `एक निश्चित सघन स्थान X* है, साथ में एक ओपन एम्बेडिंग c : X → X* है, जैसे कि X* में X के पूरक में एक एकल बिंदु होता है, जिसे सामान्यतः ∞ दर्शाया जाता है। मानचित्र c एक हॉसडॉर्फ़ कॉम्पेक्टिफिकेशन है यदि और केवल यदि X एक स्थानीय रूप से कॉम्पैक्ट, गैर-सघन हॉसडॉर्फ़ स्थान है। ऐसे स्थानों के लिए अलेक्जेंड्रॉफ विस्तारक `को एक-बिंदु कॉम्पेक्टिफिकेशन या अलेक्जेंड्रोफ कॉम्पेक्टिफिकेशन कहा जाता है। अलेक्जेंड्रोफ़ कॉम्पेक्टिफिकेशन के लाभ इसकी सरल, अधिकांशतः ज्यामितीय रूप से सार्थक संरचना में निहित हैं और यह तथ्य कि यह सभी कॉम्पेक्टिफिकेशन के बीच एक स्पष्ट अर्थ में न्यूनतम है; हानि इस तथ्य में निहित है कि यह केवल स्थानीय रूप से कॉम्पैक्ट, गैर-सघन हॉसडॉर्फ़ रिक्त स्थान के वर्ग पर हॉसडॉर्फ़ कॉम्पेक्टिफिकेशन देता है, स्टोन-सेच कॉम्पेक्टिफिकेशन के विपरीत जो किसी भी टोपोलॉजिकल स्थान के लिए उपस्थित है (किंतु टाइकोनॉफ़ रिक्त स्थान के लिए बिल्कुल एक एम्बेडिंग प्रदान करता है)।
उदाहरण: व्युत्क्रम त्रिविम प्रक्षेपण
एक-बिंदु संघनन का ज्यामितीय रूप से आकर्षक उदाहरण व्युत्क्रम त्रिविम प्रक्षेपण द्वारा दिया गया है। याद रखें कि स्टीरियोग्राफिक प्रक्षेपण एस इकाई क्षेत्र से उत्तरी ध्रुव (0,0,1) को घटाकर यूक्लिडियन विमान तक एक स्पष्ट होमोमोर्फिज्म देता है। व्युत्क्रम स्टीरियोग्राफिक प्रक्षेपण एक सघन हॉसडॉर्फ स्थान में एक विवर्त, सघन एम्बेडिंग है जो अतिरिक्त बिंदु से सटे हुए प्राप्त होता है। त्रिविम प्रक्षेपण के अनुसार अक्षांशीय वृत्त को समतलीय वृत्तों पर मैप किया जाता है। यह इस प्रकार है कि छिद्रित गोलाकार कैप्स द्वारा दिया गया का हटाया गया निकट आधार संवर्त प्लानर डिस्क के पूरक से मेल खाता है। अधिक गुणात्मक रूप से, पर निकट का आधार सेट द्वारा प्रस्तुत किया जाता है क्योंकि K के सघन उपसमुच्चय के माध्यम से होता है। इस उदाहरण में पहले से ही कुंजी सम्मिलित है सामान्य स्थिति की अवधारणाएँ सम्मिलित हैं।।
प्रेरणा
मान लीजिए कि सघन छवि और एक-बिंदु शेष के साथ एक टोपोलॉजिकल स्पेस फिर c(X) एक सघन हॉसडॉर्फ़ स्पेस में विवर्त है, इसलिए यह स्थानीय रूप से सघन हॉसडॉर्फ़ है, इसलिए इसका होमियोमोर्फिक प्रीइमेज X भी स्थानीय रूप से सघन हॉसडॉर्फ़ है। इसके अतिरिक्त , यदि X सघन होता तो c(X) Y में संवर्त होता और इसलिए सघन नहीं होता है। इस प्रकार एक स्थान केवल हॉसडॉर्फ़ एक-बिंदु कॉम्पैक्टीफिकेशन को स्वीकार कर सकता है यदि यह स्थानीय रूप से कॉम्पैक्ट, नॉनसघन और हॉसडॉर्फ़ है। इसके अतिरिक्त इस तरह के एक-बिंदु संघनन में यह संवर्त है - के विवर्त निकट सघन पूरक के साथ X के सबसेट के c के अनुसार छवि के साथ द्वारा प्राप्त किए गए सभी सेट होने चाहिए।
अलेक्जेंड्रोफ़ एक्सटेंशन
को टपॉलजी का मूल्य रहने दें। रखें और फॉर्म के सभी सेटों के साथ के सभी विवर्त उपसमुच्चय U को ओपन सेट के रूप में लेकर को टोपोलॉजीज करें, जहां संवर्त है और में सघन है। यहां, } पूरक को दर्शाता है ध्यान दें कि का एक विवर्त निकट `है, और इस प्रकार के किसी भी विवर्त आवरण में के एक सघन उपसमुच्चय को छोड़कर सभी सम्मिलित होंगे, जिसका अर्थ है कि सघन है (Kelley 1975, p. 150).
स्थान को X का अलेक्जेंड्रोफ़ विस्तारक कहा जाता है (विलार्ड, 19A)। कभी-कभी समावेशन मानचित्र के लिए समान नाम का उपयोग किया जाता है।
नीचे दी गई संपत्तियाँ उपरोक्त चर्चा से अनुसरण करती हैं:
- मानचित्र c सतत और विवर्त है: यह X को के विवर्त उपसमुच्चय के रूप में एम्बेड करता है।
- स्थान सघन है.
- छवि c(X) में सघन है, यदि X गैर-कॉम्पैक्ट है।
- स्थान हॉसडॉर्फ़ स्थान है यदि और केवल यदि x हॉसडॉर्फ़ है और स्थानीय रूप से सघन है।
- स्थान T1 स्थान है यदि और केवल यदि X, T1 है.
एक-बिंदु संघनन
विशेष रूप से अलेक्जेंड्रॉफ़ विस्तारक का हॉसडॉर्फ़ कॉम्पेक्टिफिकेशन है यदि और केवल यदि इस स्थिति`में इसे x का 'एक-बिंदु कॉम्पेक्टिफिकेशन या अलेक्जेंड्रॉफ़ कॉम्पेक्टिफिकेशन कहा जाता है।
उपरोक्त चर्चा से याद करें कि एक बिंदु शेष के साथ कोई भी हॉसडॉर्फ़ कॉम्पेक्टिफिकेशन आवश्यक रूप से एलेक्ज़ेंडरॉफ़ कॉम्पेक्टिफिकेशन के लिए आइसोमोर्फिक है। विशेषकर, यदि एक संहत है हॉसडॉर्फ स्पेस और , का एक सीमा बिंदु है (अर्थात् का एक पृथक बिंदु नहीं), , का अलेक्जेंड्रॉफ़ कॉम्पेक्टिफिकेशन है।
मान लीजिए कि X कोई गैर-कॉम्पैक्ट टाइकोनॉफ़ स्थान है। कॉम्पेक्टिफिकेशन के तुल्यता वर्गों के सेट पर प्राकृतिक आंशिक क्रम के अनुसार , कोई भी न्यूनतम तत्व एलेक्जेंडरॉफ़ विस्तारक (एंगेलकिंग, प्रमेय 3.5.12) के समान है। यह इस प्रकार है कि एक गैर-कॉम्पैक्ट टाइकोनॉफ़ स्पेस न्यूनतम कॉम्पैक्टिफिकेशन को स्वीकार करता है यदि और केवल तभी जब यह स्थानीय रूप से कॉम्पैक्ट हो।
गैर-हॉसडॉर्फ़ एक-बिंदु संघनन
मान लीजिए एक इच्छानुसार नॉनकॉम्पैक्ट टोपोलॉजिकल स्पेस है। कोई एक बिंदु जोड़कर प्राप्त किए गए के सभी कॉम्पेक्टिफिकेशन (जरूरी नहीं कि हॉसडॉर्फ) को निर्धारित करना चाहे, जिसे इस संदर्भ में एक-बिंदु कॉम्पेक्टिफिकेशन भी कहा जा सकता है। इसलिए कोई व्यक्ति को एक कॉम्पैक्ट टोपोलॉजी देने के सभी संभावित विधियों को निर्धारित करना चाहता है, जैसे कि इसमें सघन हो और से प्रेरित पर सबस्पेस टोपोलॉजी मूल टोपोलॉजी के समान हो। टोपोलॉजी पर अंतिम संगतता स्थिति स्वचालित रूप से यह दर्शाती है कि , में सघन है, क्योंकि कॉम्पैक्ट नहीं है, इसलिए इसे कॉम्पैक्ट स्पेस में संवर्त नहीं किया जा सकता है। इसके अतिरिक्त , यह एक तथ्य है कि समावेशन मानचित्र आवश्यक रूप से एक विवर्त एम्बेडिंग है, अर्थात, को में विवर्त होना चाहिए और पर टोपोलॉजी में का प्रत्येक सदस्य सम्मिलित होना चाहिए।[1] तो पर टोपोलॉजी के निकट द्वारा निर्धारित की जाती है। का कोई भी निकट आवश्यक रूप से X के एक संवर्त कॉम्पैक्ट उपसमुच्चय के में पूरक है, जैसा कि पहले चर्चा की गई थी।
पर टोपोलॉजी जो इसे का संघनन बनाती है, इस प्रकार हैं:
- ऊपर परिभाषित का अलेक्जेंड्रोफ़ विस्तार यहां हम के सभी संवर्त कॉम्पैक्ट उपसमुच्चय के पूरकों को के निकट के रूप में लेते हैं। यह सबसे बड़ी टोपोलॉजी है जो को का एक-बिंदु संघनन बनाती है।
- ओपन विस्तारक टोपोलॉजी. यहां हम का एक एकल निकट अर्थात् संपूर्ण स्थान जोड़ते हैं। यह सबसे छोटी टोपोलॉजी है जो को का एक-बिंदु संघनन बनाती है।
- उपरोक्त दो टोपोलॉजी के बीच कोई भी टोपोलॉजी मध्यवर्ती के निकट के लिए किसी को के सभी संवर्त कॉम्पैक्ट उपसमुच्चय के पूरकों में से एक उपयुक्त उपवर्ग चुनना होगा; उदाहरण के लिए सभी परिमित संवर्त संहत उपसमुच्चय के पूरक या सभी गणनीय संवर्त संहत उपसमुच्चय के पूरक है।
आगे के उदाहरण
असतत स्थानों का संघनन
- धनात्मक पूर्णांकों के समुच्चय का एक-बिंदु संघनन K = {0} U {1/n | से युक्त स्थान के लिए समरूपता है। क्रमित टोपोलॉजी के साथ n एक धनात्मक पूर्णांक है।
- एक क्रम एक टोपोलॉजिकल स्थान में एक बिंदु पर एकत्रित हो जाता है जो की में , यदि और केवल यदि मानचित्र द्वारा दिए गए के लिए में और सतत है. यहाँ असतत टोपोलॉजी है।
- पॉलीडिक स्थान को टोपोलॉजिकल स्थान के रूप में परिभाषित किया गया है जो एक अलग, स्थानीय रूप से सघन हॉसडॉर्फ स्थान के एक-बिंदु कॉम्पैक्टिफिकेशन की शक्ति की निरंतर छवि है।
सतत स्थानों का संघनन
- n-आयामी यूक्लिडियन स्थान 'Rn ' का एक-बिंदु संघनन n-क्षेत्र Sn के लिए समरूपी है जैसा कि ऊपर बताया गया है, मानचित्र को स्पष्ट रूप से n-आयामी व्युत्क्रम स्टीरियोग्राफिक प्रक्षेपण के रूप में दिया जा सकता है।
- आधे-संवर्त अंतराल [0,1) की प्रतियों के उत्पाद का एक-बिंदु संघनन, अर्थात, (होमियोमोर्फिक से) है।
- चूंकि एक कनेक्टेड सबसेट का क्लोजर जुड़ा हुआ है, एक नॉनकॉम्पैक्ट कनेक्टेड स्पेस का अलेक्जेंड्रॉफ़ विस्तारक जुड़ा हुआ है। चूँकि एक-बिंदु संघनन एक असंबद्ध स्थान को "कनेक्ट" कर सकता है: उदाहरण के लिए, अंतराल (0,1) की प्रतियों की एक परिमित संख्या के असंयुक्त संघ का एक-बिंदु संघनन, वृत्तों का एक पच्चर है।
- अंतराल (0,1) की प्रतियों की गणनीय संख्या के असंयुक्त संघ का एक-बिंदु संघनन हवाईयन एअरिंग है। यह असंख्य वृत्तों के पच्चर से भिन्न है, जो सघन नहीं है।
- कॉम्पेक्ट हॉसडॉर्फ और को देखते हुए, का कोई भी संवर्त उपसमुच्चय, का एक-बिंदु कॉम्पेक्टिफिकेशन है, जहां फॉरवर्ड स्लैश भागफल स्थान को दर्शाता है।[2]
- यदि और स्थानीय रूप से कॉम्पैक्ट हॉसडॉर्फ हैं, तो जहां \ वेज स्मैश उत्पाद है। याद रखें कि स्मैश उत्पाद की परिभाषा: जहां पच्चर योग है, और फिर, / भागफल स्थान को दर्शाता है।[2]
एक फ़नकार के रूप में
अलेक्जेंड्रॉफ़ विस्तारक को टोपोलॉजिकल स्पेस की श्रेणी से एक फ़ैक्टर के रूप में देखा जा सकता है, जिसमें उस श्रेणी के रूपवाद के रूप में उचित निरंतर मानचित्र होते हैं जिनकी वस्तुएं निरंतर मानचित्र होती हैं और जिनके लिए से तक के आकारवाद निरंतर मानचित्रों के जोड़े होते हैं ऐसा कि विशेष रूप से, होमियोमोर्फिक रिक्त स्थान में आइसोमोर्फिक अलेक्जेंड्रॉफ़ विस्तारक होते हैं।
यह भी देखें
- बोहर संघनन
- सघन स्थान
- संकलन (गणित)
- अंत (टोपोलॉजी)
- विस्तारित वास्तविक संख्या रेखा
- सामान्य स्थान
- नुकीला सेट
- रीमैन क्षेत्र
- त्रिविम प्रक्षेपण
- स्टोन-सेच संघनन
- वॉलमैन संघनन
टिप्पणियाँ
- ↑ "General topology – Non-Hausdorff one-point compactifications".
- ↑ 2.0 2.1 Joseph J. Rotman, An Introduction to Algebraic Topology (1988) Springer-Verlag ISBN 0-387-96678-1 (See Chapter 11 for proof.)
संदर्भ
- Alexandroff, Pavel S. (1924), "Über die Metrisation der im Kleinen kompakten topologischen Räume", Mathematische Annalen, 92 (3–4): 294–301, doi:10.1007/BF01448011, JFM 50.0128.04, S2CID 121699713
- Brown, Ronald (1973), "Sequentially proper maps and a sequential compactification", Journal of the London Mathematical Society, Series 2, 7 (3): 515–522, doi:10.1112/jlms/s2-7.3.515, Zbl 0269.54015
- Engelking, Ryszard (1989), General Topology, Helderman Verlag Berlin, ISBN 978-0-201-08707-9, MR 1039321
- Fedorchuk, V.V. (2001) [1994], "Aleksandrov compactification", Encyclopedia of Mathematics, EMS Press
- Kelley, John L. (1975), General Topology, Berlin, New York: Springer-Verlag, ISBN 978-0-387-90125-1, MR 0370454
- Munkres, James (1999), Topology (2nd ed.), Prentice Hall, ISBN 0-13-181629-2, Zbl 0951.54001
- Willard, Stephen (1970), General Topology, Addison-Wesley, ISBN 3-88538-006-4, MR 0264581, Zbl 0205.26601