जीप समस्या
जीप की समस्या,[1] रेगिस्तान पार करने की समस्या[2] या अन्वेषण समस्या[3] एक गणित समस्या है जिसमें एक विलिस एमबी को ईंधन की एक निश्चित मात्रा के साथ रेगिस्तान में तय की जाने वाली दूरी को अधिकतम करना होगा। जीप केवल एक निश्चित और सीमित मात्रा में ईंधन ले जा सकती है, लेकिन यह ईंधन छोड़ सकती है और रेगिस्तान में कहीं भी ईंधन डंप पर ईंधन एकत्र कर सकती है।
समस्या पहली बार 9वीं शताब्दी के संग्रह युवा लोगों को तेज़ करने के लिए प्रस्ताव (युवाओं को तेज करने की समस्याएं) में दिखाई दी, जिसका श्रेय अलकुइन को दिया गया, जिसमें पहेली एक यात्रा कर रहे ऊंट के अनाज खाने के बारे में थी।[4] लुका पैसिओली की डी विरिबस क्वांटिटैटिस (सी. 1500) भी समस्या पर चर्चा करती है। नाथन फाइन|एन द्वारा एक आधुनिक उपचार दिया गया। 1947 में जे. फाइन.[1]
समस्या के विभिन्न रूप ऊँट और केले की समस्या हैं[5] जहां एक व्यापारी को केले खाने वाले ऊंट का उपयोग करके बाजार में केले की अधिकतम संख्या पहुंचानी होती है, यात्रियों को रेगिस्तान की समस्या का सामना करना पड़ता है[6] जहां कई यात्रियों को एक गंतव्य तक पहुंचना होता है और वे उन्हें छोड़ने के बजाय केवल आपूर्ति का आदान-प्रदान कर सकते हैं, और रेगिस्तान की समस्या के पार कारें[7] जो फिर से केवल अपने ईंधन का आदान-प्रदान कर सकता है, लेकिन जहां खाली कारों को छोड़ा जा सकता है। इस अंतिम समस्या में मल्टीस्टेज रॉकेट के संचालन के समान समानताएं हैं।
समस्या
एक निश्चित आधार पर ईंधन की n इकाइयाँ संग्रहित होती हैं। जीप किसी भी समय अधिकतम 1 यूनिट ईंधन ले जा सकती है, और 1 यूनिट ईंधन पर 1 यूनिट की दूरी तय कर सकती है (जीप की ईंधन खपत स्थिर मानी जाती है)। यात्रा के किसी भी बिंदु पर जीप किसी भी मात्रा में ईंधन को ईंधन डंप पर छोड़ सकती है, या पिछली यात्रा में ईंधन डंप पर छोड़े गए ईंधन की किसी भी मात्रा को एकत्र कर सकती है, जब तक कि उसका ईंधन लोड कभी भी अधिक न हो एक इकाई। समस्या के दो प्रकार हैं:
- 'रेगिस्तान की खोज' – प्रत्येक यात्रा के अंत में जीप को बेस पर वापस लौटना होगा।
- रेगिस्तान को पार करना – जीप को अंतिम यात्रा को छोड़कर प्रत्येक यात्रा के अंत में बेस पर वापस लौटना होगा, जब जीप ईंधन खत्म होने से पहले जितनी दूर तक यात्रा कर सकती है, यात्रा करती है।
किसी भी स्थिति में उद्देश्य जीप द्वारा अपनी अंतिम यात्रा में तय की गई दूरी को अधिकतम करना है। वैकल्पिक रूप से, उद्देश्य किसी दी गई दूरी की अंतिम यात्रा के लिए आवश्यक ईंधन की न्यूनतम मात्रा का पता लगाना हो सकता है।
विविधताएं
क्लासिक समस्या में जीप और ईंधन डंप पर ईंधन को एक सतत कार्य मात्रा के रूप में माना जाता है। समस्या पर अधिक जटिल विविधताएँ प्रस्तावित की गई हैं जिनमें ईंधन को केवल छोड़ा जा सकता है या अलग-अलग मात्रा में एकत्र किया जा सकता है।[8] ऊँट और केले की समस्या में, व्यापारी के पास केले की एन इकाइयाँ हैं। ऊँट किसी भी समय अधिकतम 1 इकाई केले ले जा सकता है, और 1 इकाई केले पर 1 इकाई दूरी तय कर सकता है। बाज़ार मी इकाई की दूरी पर है। यात्रा के किसी भी बिंदु पर ऊंट अपने साथ ले जा रहे केलों की किसी भी मात्रा को कैंप पोस्ट पर छोड़ सकता है, या पिछली यात्रा में कैंप पोस्ट पर छोड़े गए केलों की किसी भी मात्रा को एकत्र कर सकता है, जब तक कि उसके केले का भार कभी भी अधिक न हो जाए। एक इकाई। समस्या केले की अधिकतम इकाइयों की माँग करती है जिन्हें बाज़ार तक पहुँचाया जा सके।
रेगिस्तान की समस्या से जूझ रहे यात्रियों के लिए शुरुआती बेस में आपूर्ति की असीमित इकाइयाँ हैं। प्रत्येक यात्री किसी भी समय आपूर्ति की अधिकतम 1 इकाई ले जा सकता है, और आपूर्ति की 1 इकाई पर 1 इकाई की दूरी तय कर सकता है। दूसरा आधार m इकाई की दूरी पर है। पिछली दो समस्याओं के विपरीत, यात्री रेगिस्तान में आपूर्ति नहीं छोड़ सकते; हालाँकि, यात्रा के किसी भी बिंदु पर, साथ जाने वाले यात्री आपस में आपूर्ति स्थानांतरित कर सकते हैं, जब तक कि प्रत्येक यात्री आपूर्ति की 1 इकाई से अधिक न ले जाए। प्रत्येक लौटने वाले यात्री के पास रास्ते में पर्याप्त आपूर्ति होनी चाहिए। समस्या दूसरे बेस तक पहुंचने के लिए आवश्यक यात्रियों के साथ आने वाली न्यूनतम संख्या की मांग करती है। इस समस्या का एक प्रकार उपलब्ध यात्रियों की कुल संख्या बताता है, और अधिकतम दूरी पूछता है जिस तक पहुंचा जा सकता है।
रेगिस्तानी समस्या के पार की कारों में, शुरुआती बेस में ईंधन की असीमित इकाइयाँ होती हैं। प्रत्येक कार किसी भी समय अधिकतम 1 यूनिट आपूर्ति ले जा सकती है, और 1 यूनिट ईंधन पर 1 यूनिट की दूरी तय कर सकती है। दूसरा आधार m इकाई की दूरी पर है। गाड़ियाँ रेगिस्तान में ईंधन नहीं छोड़ सकतीं; हालाँकि, यात्रा के किसी भी समय, साथ चलने वाली कारें आपस में ईंधन स्थानांतरित कर सकती हैं, जब तक कि प्रत्येक कार में 1 यूनिट से अधिक ईंधन न हो। बिना ईंधन वाली खाली कारों को रेगिस्तान में छोड़ दिया जाता है। समस्या दूसरे बेस तक पहुंचने के लिए आवश्यक कारों की न्यूनतम संख्या मांगती है। इस समस्या का एक प्रकार उपलब्ध कारों की कुल संख्या बताता है, और अधिकतम दूरी तक पहुंचने के लिए कहता है।
समाधान
रेगिस्तानी संस्करण की खोज के लिए अंतिम यात्रा पर तय की गई दूरी को अधिकतम करने वाली रणनीति इस प्रकार है:
- जीप कई यात्राएँ करती है। प्रत्येक यात्रा पर यह 1 यूनिट ईंधन के साथ बेस से शुरू होती है।
- पहली यात्रा में जीप 1/(2n) यूनिट की दूरी तय करती है और ईंधन डंप पर (n − 1)/n यूनिट ईंधन छोड़ती है। जीप में अभी भी 1/(2n) यूनिट ईंधन है - जो बेस पर लौटने के लिए पर्याप्त है।
- बाद की प्रत्येक n − 1 यात्रा में जीप रास्ते में इस पहले ईंधन डंप से 1/(2n) यूनिट ईंधन एकत्र करती है, ताकि वह 1 यूनिट ईंधन लेकर ईंधन डंप छोड़ दे। यह रास्ते में इस पहले ईंधन डंप से 1/(2n) यूनिट ईंधन भी एकत्र करता है, जो बेस पर लौटने के लिए पर्याप्त ईंधन है।
- दूसरी यात्रा में जीप पहले ईंधन डंप तक जाती है और ईंधन भरती है। फिर यह 1/(2n − 2) इकाइयों की दूरी तय करता है और दूसरे ईंधन डंप पर (n − 2)/(n − 1) इकाइयों को छोड़ता है। जीप में अभी भी 1/(2n − 2) यूनिट ईंधन है, जो पहले ईंधन डंप पर लौटने के लिए पर्याप्त है। यहां यह 1/(2n) यूनिट ईंधन एकत्र करता है, जो बेस पर लौटने के लिए पर्याप्त ईंधन है।
- आगामी प्रत्येक n - 2 यात्राओं पर जीप रास्ते में इस दूसरे ईंधन डंप से 1/(2n - 2) यूनिट ईंधन एकत्र करती है, ताकि वह ईंधन डंप से 1 यूनिट ईंधन लेकर निकल जाए। यह वापसी में दूसरे ईंधन डंप से 1/(2n − 2) यूनिट ईंधन भी एकत्र करता है, जो पहले ईंधन डंप में लौटने के लिए पर्याप्त ईंधन है।
- जीप इस तरह से चलती रहती है, ताकि यात्रा k पर यह पिछले ईंधन डंप से 1/(2n − 2k + 2) इकाइयों की दूरी पर एक नया kth ईंधन डंप स्थापित करे और (n − k)/(n −) छोड़ दे k+1) ईंधन की इकाइयाँ। बाद की प्रत्येक n − k यात्रा पर यह बाहर जाते समय kth डंप से 1/(2n − 2k 2k + 2) यूनिट ईंधन एकत्र करता है और वापस आते समय 1/(2n − 2k 2k + 2) यूनिट ईंधन एकत्र करता है।
जब जीप अपनी अंतिम यात्रा शुरू करती है, तो वहां कोई ईंधन डंप नहीं होता है। सबसे दूर वाले में ईंधन की एक इकाई का 1/2 भाग होता है, अगले सबसे दूर वाले में ईंधन की एक इकाई का 1/3 भाग होता है, इत्यादि, और निकटतम ईंधन डंप में केवल 1/n इकाई ईंधन बचा होता है। 1 यूनिट ईंधन के साथ, जिसके साथ यह बेस से शुरू होता है, इसका मतलब है कि जीप कुल राउंड ट्रिप दूरी तय कर सकती है
इकाइयाँ अपनी अंतिम यात्रा पर हैं (रेगिस्तान में तय की गई अधिकतम दूरी इसकी आधी है)।[3]यह बाहर जाते समय प्रत्येक डंप पर बचे हुए ईंधन का आधा हिस्सा इकट्ठा करता है, जिससे उसका टैंक भर जाता है। सबसे दूर के ईंधन डंप को छोड़ने के बाद यह रेगिस्तान में 1/2 यूनिट आगे तक जाता है और फिर सबसे दूर के ईंधन डंप पर लौट आता है। यह वापसी में प्रत्येक ईंधन डंप से शेष ईंधन एकत्र करता है, जो अगले ईंधन डंप तक पहुंचने या अंतिम चरण में बेस पर लौटने के लिए पर्याप्त है।
अंतिम यात्रा में तय की गई दूरी nवाँ हार्मोनिक संख्या, H हैn. चूँकि हार्मोनिक संख्याएँ असीमित हैं, अंतिम यात्रा पर किसी भी दूरी को पार करना संभव है, साथ ही आधार पर पर्याप्त ईंधन उपलब्ध है। हालाँकि, आवश्यक ईंधन की मात्रा और ईंधन डंप की संख्या दोनों ही यात्रा की जाने वाली दूरी के साथ तेजी से बढ़ती हैं।
रेगिस्तानी संस्करण को पार करने को एक समान रणनीति के साथ हल किया जा सकता है, सिवाय इसके कि अब अंतिम यात्रा पर वापस जाते समय ईंधन इकट्ठा करने की कोई आवश्यकता नहीं है। इसलिए ट्रिप k पर जीप पिछले ईंधन डंप से 1/(2n − 2k + 1) इकाइयों की दूरी पर एक नया kth ईंधन डंप स्थापित करती है और (2n − 2k − 1)/(2n − 2k − 1) इकाइयों को छोड़ देती है वहाँ ईंधन. अगले प्रत्येक n − − k − 1 ट्रिप पर यह अपने रास्ते में kth डंप से 1/(2n − 2k − 1) यूनिट ईंधन एकत्र करता है और रास्ते में 1/(2n − 2k − 1) यूनिट ईंधन एकत्र करता है। पीछे।
अब जब जीप अपनी अंतिम यात्रा शुरू करती है, तो वहां कोई ईंधन डंप नहीं होता है। सबसे दूर वाले में ईंधन की एक इकाई का 1/3 हिस्सा होता है, अगले सबसे दूर वाले में ईंधन की एक इकाई का 1/5 हिस्सा होता है, और इसी तरह, और निकटतम ईंधन डंप में केवल 1/(2n − 1) इकाई ईंधन बचा होता है। ईंधन की 1 इकाई जिसके साथ यह बेस से शुरू होती है, इसका मतलब है कि जीप कुल दूरी तय कर सकती है
इकाइयाँ अपनी अंतिम यात्रा पर हैं।[1][3]यह बाहर जाते समय प्रत्येक डंप पर बचा हुआ सारा ईंधन एकत्र करता है, जिससे उसका टैंक भर जाता है। सबसे दूर स्थित ईंधन डंप से निकलने के बाद यह 1 यूनिट की अतिरिक्त दूरी तय करता है।
ध्यान दें कि
इसलिए सैद्धांतिक रूप से आधार पर पर्याप्त ईंधन दिए जाने पर किसी भी आकार के रेगिस्तान को पार करना संभव है। पहले की तरह, आवश्यक ईंधन की मात्रा और ईंधन डंप की संख्या दोनों यात्रा की जाने वाली दूरी के साथ तेजी से बढ़ती हैं।
संक्षेप में, n यात्राओं में (n-1 बीच में ईंधन डंप और कुल n इकाइयों के ईंधन की खपत के साथ) जीप द्वारा (किसी भी समय दूरी की 1 इकाई के लिए ईंधन क्षमता के साथ) पहुंचने योग्य अधिकतम दूरी है
- , रेगिस्तान की खोज के लिए जहां जीप को हर यात्रा के अंत में बेस पर लौटना होगा;
- , रेगिस्तान को पार करने के लिए जहां जीप को अंतिम यात्रा को छोड़कर हर यात्रा के अंत में बेस पर लौटना होता है, जब जीप ईंधन खत्म होने से पहले जितनी दूर तक यात्रा कर सकती है, यात्रा करती है।
यहाँnवाँ हार्मोनिक संख्या है.
ईंधन की निरंतर मात्रा
आधार पर उपलब्ध ईंधन इकाइयों की संख्या पूर्णांक होने की आवश्यकता नहीं है। सामान्य स्थिति में, रेगिस्तान की समस्या का पता लगाने के लिए प्राप्त होने वाली अधिकतम दूरी nईंधन की इकाई है
पहला ईंधन डंप स्थित है प्रारंभिक आधार से दूरी की इकाई, दूसरा पर पहले ईंधन डंप से दूरी की इकाइयाँ, तीसरे पर दूसरे ईंधन डंप से दूरी की इकाइयाँ, इत्यादि। यहाँ का आंशिक भाग है n.
रेगिस्तान को पार करने के लिए प्राप्त होने वाली अधिकतम दूरी की समस्या nईंधन की इकाई है
पहला ईंधन डंप स्थित है प्रारंभिक आधार से दूरी की इकाई, दूसरा पर पहले ईंधन डंप से दूरी की इकाइयाँ, तीसरे पर दूसरे ईंधन डंप से दूरी की इकाइयाँ, इत्यादि। यहाँ का आंशिक भाग है n.
समस्या के अन्य रूप
ऊँट और केले की समस्या में, यह मानते हुए कि व्यापारी के पास शुरुआती आधार पर केले की कुल n=7/3 इकाइयाँ हैं और बाज़ार m दूरी पर है:
- अगर , इस समस्या का कोई समाधान मौजूद नहीं है;
- अगर , परिवहन के लिए कोई मिडवे कैंप पोस्ट आवश्यक नहीं है, और दूरी m के लिए दोहराया जाएगा कई बार ऊँट द्वारा, इसलिए बाजार में केले की अधिकतम मात्रा पहुंचाई जाती है ;
- अगर , केले की अधिकतम मात्रा के परिवहन के लिए इष्टतम समाधान के लिए कुछ मध्य मार्ग शिविर चौकियों की आवश्यकता होती है:
- एम=1/4<(1/3+1/15) के लिए, शुरुआती बेस से 1/15 यूनिट की दूरी पर केवल एक मिडवे कैंप पोस्ट आवश्यक है, जहां कुल 2 यूनिट केले जमा होंगे . कैंप पोस्ट से बाज़ार की दूरी (1/4-1/15) है, जिसे ऊँट द्वारा 3 बार दोहराया जाएगा, और बाज़ार तक पहुँचाए जाने वाले केले की अधिकतम मात्रा 2-(1/4-1/) है 15)*3=1.45 इकाइयाँ;
- m=1/2>(1/3+1/15) के लिए, पहले कैंप पोस्ट से 1/3 यूनिट की दूरी पर एक और मिडवे कैंप पोस्ट आवश्यक है, जहां कुल 1 यूनिट केले जमा होंगे। दूसरे कैंप पोस्ट से बाज़ार की दूरी [1/2-(1/3+1/15)] है, जिसे ऊँट द्वारा केवल एक बार तय किया जाएगा, और बाज़ार तक पहुँचाए जाने वाले केले की अधिकतम मात्रा 1- है। [1/2-(1/3+1/15)]*1=0.9 इकाइयां।
यदि ऊँट को अंततः प्रारंभिक आधार पर लौटना आवश्यक हो, तो फ़ंक्शन लागू होता है (अभी भी n=7/3 मानकर):
- अगर , इस समस्या का कोई समाधान मौजूद नहीं है;
- अगर , परिवहन के लिए कोई मिडवे कैंप पोस्ट आवश्यक नहीं है, और दूरी m के लिए दोहराया जाएगा कई बार ऊँट द्वारा, इसलिए बाजार में केले की अधिकतम मात्रा पहुंचाई जाती है ;
- अगर , केले की अधिकतम मात्रा के परिवहन के लिए इष्टतम समाधान के लिए कुछ मध्य मार्ग शिविर चौकियों की आवश्यकता होती है:
- एम=1/4<(1/4+1/18) के लिए, शुरुआती बेस से 1/18 यूनिट की दूरी पर केवल एक मिडवे कैंप पोस्ट आवश्यक है, जहां कुल 2 यूनिट केले (प्लस) ऊँट की अंतिम वापसी के लिए 1/18 इकाइयाँ) अर्जित होंगी। कैंप पोस्ट से बाज़ार की दूरी (1/4-1/18) है, जिसे ऊँट द्वारा 4 बार दोहराया जाएगा, और बाज़ार तक पहुँचाए जाने वाले केले की अधिकतम मात्रा 2-(1/4-1/) है 18)*4=1.22 इकाइयाँ;
- m=1/2>(1/4+1/18) के लिए, पहले कैंप पोस्ट से 1/4 यूनिट की दूरी पर एक और मिडवे कैंप पोस्ट आवश्यक है, जहां केले की कुल 1 यूनिट (प्लस 1) /ऊंट की अंतिम वापसी के लिए 4 इकाइयां) अर्जित होंगी। दूसरे कैंप पोस्ट से बाज़ार की दूरी [1/2-(1/4+1/18)] है, जिसे ऊँट द्वारा दो बार दोहराया जाएगा, और बाज़ार तक पहुँचाए जाने वाले केले की अधिकतम मात्रा 1-[ है 1/2-(1/4+1/18)]*2=0.61 इकाइयाँ।
'रेगिस्तान के पार यात्रियों की समस्या' में, मान लें कि n यात्री आपूर्ति की n इकाइयों के साथ शुरुआती बेस से निकलते हैं। 1/(n+1) इकाइयों की दूरी के बाद, वे पहले ही आपूर्ति की n/(n+1) इकाइयों का उपभोग कर चुके होंगे; इस बिंदु पर, यात्रियों में से एक को आपूर्ति की 1/(n+1) इकाइयों के साथ लौटना चाहिए, समूह को आपूर्ति की बिल्कुल (n-1) इकाइयों को छोड़कर, ताकि प्रत्येक शेष यात्री आपूर्ति की बिल्कुल एक इकाई ले जाए। समूह फिर आपूर्ति की (n-1)/(n+1) इकाइयों का उपभोग करते हुए, 1/(n+1) इकाइयों की दूरी तय करता है; इस बिंदु पर, शेष यात्रियों में से एक को आपूर्ति की 2/(n+1) इकाइयों के साथ वापस लौटना चाहिए, ताकि समूह आपूर्ति की बिल्कुल (n-2) इकाइयों को छोड़कर, प्रारंभिक आधार पर सुरक्षित रूप से वापस आ सके। समूह 1/(n+1) इकाइयों की दूरी बढ़ाता रहता है और एक यात्री को कम करता रहता है, जब तक कि आपूर्ति की ठीक एक इकाई ले जाने वाला केवल एक यात्री न रह जाए। अंततः, यह यात्री सबसे दूर बिंदु तक पहुँचने के लिए एक इकाई दूरी तय कर सकता है। कुल मिलाकर, n यात्री सबसे लंबी दूरी तक पहुँच सकते हैं
इसे m के बराबर करके, m इकाई दूरी तय करने के लिए आवश्यक यात्रियों की न्यूनतम संख्या का समाधान निकाला जा सकता है। ध्यान दें कि समाधान केवल m<2 के लिए मौजूद हैं।
यदि अंतिम और अंतिम यात्री को भी शुरुआती बेस पर लौटने की आवश्यकता है, तो वह अकेले केवल 1/(n+1) यूनिट की यात्रा करेगा ताकि उसके पास लौटने के लिए n/(n+1) यूनिट की आपूर्ति हो, इसलिए सबसे लंबी दूरी n यात्री पहुंच सकते हैं
इसे m के बराबर करके, m इकाई दूरी तय करने के लिए आवश्यक यात्रियों की न्यूनतम संख्या का समाधान निकाला जा सकता है। ध्यान दें कि समाधान केवल m<1 के लिए मौजूद हैं।
'रेगिस्तान के पार कारों की समस्या' में, मान लें कि n कारें ईंधन की n इकाइयों के साथ शुरुआती आधार से निकलती हैं। 1/n इकाई की दूरी के बाद, समूह पहले ही ईंधन की ठीक एक इकाई की खपत कर चुका होगा; इस बिंदु पर, उन्हें अपने बीच ईंधन स्थानांतरित करना चाहिए, एक खाली कार को पीछे छोड़ना चाहिए, और (n-1) कारों के बीच ईंधन की (n-1) इकाइयों को ले जाना चाहिए। अन्य 1/(n-1) इकाइयों की दूरी के बाद, समूह ने ईंधन की एक और इकाई की खपत कर ली होगी; फिर से, उन्हें ईंधन स्थानांतरित करना चाहिए, एक खाली कार पीछे छोड़नी चाहिए, और (n-2) कारों के बीच ईंधन की (n-2) इकाइयाँ ले जानी चाहिए। समूह तब तक चलता रहता है और एक कार को कम करता रहता है, जब तक कि ईंधन की ठीक एक इकाई ले जाने वाली केवल एक कार न रह जाए। अंततः, यह कार सबसे दूर बिंदु तक पहुँचने के लिए एक इकाई की दूरी तय कर सकती है। कुल मिलाकर, n कारें जिस सबसे लंबी दूरी तक पहुंच सकती हैं वह nवां हार्मोनिक नंबर है:
- इसे m के बराबर करके, m इकाई दूरी तय करने के लिए आवश्यक कारों की न्यूनतम संख्या का समाधान निकाला जा सकता है।
आदेश स्वतंत्रता
ध्यान दें कि जीप यात्राओं का क्रम निश्चित नहीं है। उदाहरण के लिए समस्या के रेगिस्तानी संस्करण की खोज में, जीप बना सकती है n − 1 बेस और पहले ईंधन डंप के बीच राउंड-ट्रिप, प्रस्थान (n − 1) / n ईंधन की इकाइयाँ हर बार ईंधन डंप पर जाती हैं और फिर एक बनाती हैं n-पहले ईंधन डंप के लिए एकतरफ़ा यात्रा, इस प्रकार कुल मिलाकर वहाँ पहुँचना (n − 1) + 1/(2n) ईंधन की इकाइयाँ उपलब्ध हैं। वह 1/(2n) इकाइयों को सबसे अंत में और दूसरे आधार पर वापसी यात्रा के लिए सहेजा जाता है n − 1 ईंधन की इकाइयों का उपयोग पहले और दूसरे ईंधन डंप के बीच ईंधन को स्थानांतरित करने के लिए किया जाता है n − 2 राउंड-ट्रिप और फिर एक (n−1)-दूसरे ईंधन डंप के लिए एकतरफ़ा यात्रा। और इसी तरह।
व्यावहारिक अनुप्रयोग
समस्या का युद्धकालीन स्थितियों में व्यावहारिक अनुप्रयोग हो सकता है, विशेषकर ईंधन दक्षता के संबंध में। द्वितीय विश्व युद्ध में बी-29 द्वारा जापान पर बमबारी के संदर्भ में, रॉबर्ट मैकनामारा ने फिल्म द फॉग ऑफ वॉर में कहा है कि ईंधन को आगे के ठिकानों तक पहुंचाने के कारण होने वाली ईंधन दक्षता के मुद्दे को समझना इस रणनीति का मुख्य कारण था। द्वीप पर जाने की रणनीति के पक्ष में चीन की मुख्य भूमि से बमबारी शुरू करने का निर्णय छोड़ दिया गया:
"We had to fly those planes from the bases in Kansas to India. Then we had to fly fuel over the hump into China. [...] We were supposed to take these B-29s—there were no tanker aircraft there. We were to fill them with fuel, fly from India to Chengtu; offload the fuel; fly back to India; make enough missions to build up fuel in Chengtu; fly to Yawata, Japan; bomb the steel mills; and go back to India. We had so little training on this problem of maximizing [fuel] efficiency, we actually found to get some of the B-29s back instead of offloading fuel, they had to take it on. To make a long story short, it wasn't worth a damn. And it was LeMay who really came to that conclusion, and led the Chiefs to move the whole thing to the Marianas, which devastated Japan."[9]
(द्वितीय विश्व युद्ध के अंत में हिरोशिमा और नागासाकी पर परमाणु बमबारी उत्तरी मारियाना द्वीप समूह में प्रशांत महासागर के टीआई वर्ष द्वीप से बी-29 सुपर किले का उपयोग करके की गई थी।)
इन विचारों के अनुप्रयोग के लिए ऑपरेशन ब्लैक बक भी देखें। फ़ॉकलैंड युद्ध के दौरान आयोजित इन मिशनों में, शाही वायु सेना ने एस्केन्शन द्वीप पर स्थित एवरो वल्कन बमवर्षकों को फ़ॉकलैंड द्वीप समूह में लक्ष्य पर बमबारी करने में सक्षम बनाने के लिए टैंकरों को खड़ा करके हवा से हवा में ईंधन भरने का उपयोग किया।
यह भी देखें
- हार्मोनिक श्रृंखला (गणित)|हार्मोनिक श्रृंखला (गणित)
- अनुकूलन (गणित)
संदर्भ
- ↑ 1.0 1.1 1.2 Weisstein, Eric W. "Jeep Problem". MathWorld.
- ↑ Gardner, Martin (1994). My Best Mathematical and Logic Puzzles. Dover. pp. 53. ISBN 0-486-28152-3.
- ↑ 3.0 3.1 3.2 "Exploration problems. Another common question is concerned with the maximum distance into a desert which could be reached from a frontier settlement by an explorer capable of carrying provisions that would last him for a days." W. W. Rouse Ball and H.S.M. Coxeter (1987). Mathematical Recreations and Essays, Thirteenth Edition, Dover, p32. ISBN 0-486-25357-0.
- ↑ Problems to Sharpen the Young, John Hadley and David Singmaster, The Mathematical Gazette, 76, #475 (March 1992), pp. 102–126.
- ↑ "Puzzle 15 | (Camel and Banana Puzzle)". GeeksforGeeks (in English). 2015-03-11. Retrieved 2020-02-04.
- ↑ "रेगिस्तान के पार यात्री". mathforum.org. Retrieved 2020-02-04.
{{cite web}}
: CS1 maint: url-status (link) - ↑ "रेगिस्तान के पार कारें पहेली - समाधान". www.mathsisfun.com. Retrieved 2020-02-04.
- ↑ Optimal Logistics for Expeditions: the Jeep Problem with Complete Refilling, Gunter Rote and Guochuan Zhang, June 1996
- ↑ Fog of War transcript, www.errolmorris.com