बाहरी माप
माप सिद्धांत के गणित क्षेत्र में, एक बाहरी माप या बाहरी माप कुछ अतिरिक्त तकनीकी स्थितियों को संतुष्ट करने वाले विस्तारित वास्तविक संख्याओं में मूल्यों के साथ दिए गए समुच्चय (गणित) के सभी उपसमुच्चय पर परिभाषित एक फलन है। मापने योग्य समुच्चय और गणनीय योगात्मक माप के सिद्धांत के लिए एक अमूर्त आधार प्रदान करने के लिए बाहरी माप के सिद्धांत को पहली बार कॉन्स्टेंटिन कैराथोडोरी द्वारा प्रस्तावित किया गया था।[1][2] बाहरी मापों पर कैराथोडोरी के काम को माप-सैद्धांतिक समुच्चय सिद्धांत में कई अनुप्रयोग मिले (उदाहरण के लिए बाहरी मापों का उपयोग मौलिक कैराथोडोरी के विस्तार प्रमेय के प्रमाण में किया जाता है), और हॉसडॉर्फ द्वारा एक आवश्यक प्रकार से उपयोग किया गया था ताकि एक आयाम-जैसे मीट्रिक अपरिवर्तनीय को परिभाषित किया जा सके जिसे हॉसडॉर्फ़ आयाम कहा जाता है। बाहरी माप सामान्यतः ज्यामितीय माप सिद्धांत के क्षेत्र में उपयोग किए जाते हैं।
माप लंबाई, क्षेत्रफल और आयतन का सामान्यीकरण हैं, लेकिन में अंतराल या में गेंदों की तुलना में बहुत अधिक अमूर्त और अनियमित समुच्चयों के लिए उपयोगी होते हैं। कोई पर एक सामान्यीकृत मापन फलन को परिभाषित करने की अपेक्षा कर सकता है जो निम्नलिखित आवश्यकताओं को पूरा करता है:
- वास्तविकता के किसी भी अंतराल का माप होता हैं।
- मापने का फलन एक गैर-नकारात्मक विस्तारित वास्तविक-मूल्य वाला फलन है जो के सभी उपससमुच्चय के लिए परिभाषित हैं।
- अनुवाद अपरिवर्तनीयता: किसी भी समुच्चय और किसी वास्तविक के लिए, समुच्चय और का माप समान हैं।
- गणनीय योज्यता: के युग्मानूसार असंयुक्त उपसमुच्चय के किसी अनुक्रम के लिए हैं।
यह पता चला है कि ये आवश्यकताएँ असंगत स्थितियाँ हैं; गैर-मापने योग्य समुच्चय देखें। के सभी उपसमुच्चय पर एक बाहरी माप के निर्माण का उद्देश्य उपसमुच्चय के एक वर्ग का चयन करना है (जिसे मापने योग्य कहा जा सकता है) ताकि गणनीय योगात्मकता गुण को संतुष्ट किया जा सके।
बाहरी माप
एक समुच्चय को देखते हुए, मान लीजिए कि रिक्त समुच्चय सहित, के सभी उपसमुच्चयों के संग्रह को दर्शाता है। पर एक बाहरी माप एक समुच्चय फलन है।
- शून्य रिक्त समुच्चय:
- गणनीय रूप से उपयोगात्मक: के स्वेच्छाचारी उपसमुच्चय के लिए
ध्यान दें कि इस परिभाषा में अनंत योग के बारे में कोई सूक्ष्मता नहीं है। सभी सारांशों को गैर-ऋणात्मक माना जाता है, आंशिक योगों का क्रम केवल बिना किसी सीमा के बढ़ते हुए ही भिन्न हो सकता है। अतः परिभाषा में दिखाई देने वाला अनंत योग हमेशा का एक अच्छी तरह से परिभाषित अवयव होता है। यदि, इसके बदले, किसी बाहरी माप को नकारात्मक मान लेने की अनुमति दी जाती है, तो गैर-अभिसरण अनंत योग की संभावना को ध्यान में रखते हुए इसकी परिभाषा को संशोधित करता है।
एक वैकल्पिक और समकक्ष परिभाषा:[3] कुछ पाठ्यपुस्तकें, जैसे हेल्मोस (1950), इसके बदले पर एक बाहरी माप को एक फलन के रूप में परिभाषित करती हैं जैसे कि
- शून्य रिक्त समुच्चय:
- एकदिष्ट: अगर और , के साथ के उपसमुच्चय हैं, तो
- के स्वेच्छाचारी उपसमुच्चय के लिए
Proof of equivalence. |
Suppose that is an outer measure in sense originally given above. If and are subsets of with then by appealing to the definition with and for all one finds that The third condition in the alternative definition is immediate from the trivial observation that
Suppose instead that is an outer measure in the alternative definition. Let be arbitrary subsets of and suppose that
One then has
with the first inequality following from the second condition in the alternative definition, and the second inequality following from the third condition in the alternative definition. So is an outer measure in the sense of the original definition.
|
बाहरी माप के सापेक्ष समुच्चय की मापनीयता
मान लीजिए कि बाहरी माप वाला एक समुच्चय है। एक का कहना है कि का एक उपसमुच्चय , -मापने योग्य है (कभी-कभी इसे गणितज्ञ कैराथोडोरी के बाद के सापेक्ष कैराथोडोरी-मापने योग्य भी कहा जाता है) यदि और केवल यदि
अनौपचारिक रूप से, यह कहता है कि -मापने योग्य उपसमुच्चय वह है जिसका उपयोग बिल्डिंग ब्लॉक के रूप में किया जा सकता है, किसी अन्य उपसमुच्चय को टुकड़ों में तोड़ना (अर्थात्, वह टुकड़ा जो मापने योग्य समुच्चय के अंदर है और वह टुकड़ा जो मापने योग्य समुच्चय के बाहर है)। माप सिद्धांत की प्रेरणा के संदर्भ में, कोई यह अपेक्षा करेगा कि क्षेत्र, उदाहरण के लिए, समतल पर एक बाहरी माप होना चाहिए। तब कोई उम्मीद कर सकता है कि अपेक्षित सिद्धांत का पालन करते हुए समतल के प्रत्येक उपसमूह को "मापन योग्य" माना जाएगा
बाहरी माप से संबद्ध माप समष्टि
इसे देखने के लिए -मापने योग्यता की उपरोक्त परिभाषा का उपयोग करना स्पष्ट है
- अगर -मापने योग्य है तो इसका पूरक भी -मापने योग्य है।
निम्नलिखित स्थिति को "मापने योग्य उपसमुच्चय पर की गणनीय योगात्मकता'' के रूप में जाना जाता है।
- अगर और के - मापने योग्य उपसमुच्चय हैं, जब भी रिक्त होता है, तो एक के पास है
Proof of countable additivity. |
One automatically has the conclusion in the form "" from the definition of outer measure. So it is only necessary to prove the "" inequality. One has for any positive number due to the second condition in the "alternative definition" of outer measure given above. Suppose (inductively) that Applying the above definition of -measurability with and with one has which closes the induction. Going back to the first line of the proof, one then has for any positive integer One can then send to infinity to get the required "" inequality.
|
एक समान प्रमाण से पता चलता है कि:
- अगर के - मापने योग्य उपसमुच्चय हैं, तो संघ और प्रतिच्छेदन भी -मापने योग्य है।
यहां दिए गए गुणों को निम्नलिखित शब्दावली द्वारा संक्षेपित किया जा सकता है:
किसी समुच्चय पर किसी भी बाहरी माप को देखते हुए, के सभी -मापने योग्य उपसमुच्चय का संग्रह एक σ-बीजगणित है। इस -बीजगणित में का प्रतिबंध एक माप है।
इस प्रकार पर एक माप समष्टि संरचना होती है, जो स्वाभाविक रूप से पर एक बाहरी माप के विनिर्देश से उत्पन्न होती है। इस माप समष्टि में पूर्णता का अतिरिक्त गुण है, जो निम्नलिखित कथन में निहित है:
- प्रत्येक उपसमुच्चय ऐसा है कि -मापने योग्य है।
बाहरी माप की "वैकल्पिक परिभाषा" में दूसरी गुण का उपयोग करके इसे सिद्ध करना सरल है।
बाहरी माप पर प्रतिबंध लगाना और आगे बढ़ना
मान लीजिए समुच्चय पर एक बाहरी माप है।
पुशफॉरवर्ड
एक और समुच्चय और एक मानचित्र दिया गया है जो द्वारा परिभाषित करता है
कोई भी परिभाषाओं से सीधे सत्यापित कर सकता है कि पर एक बाहरी माप है।
प्रतिबंध
होने देना B, X का उपसमुच्चय है। μB : 2X→[0,∞] को परिभाषित करें
कोई सीधे परिभाषाओं से जांच सकता है कि μB X पर एक और बाहरी माप है।
पुशफॉरवर्ड या प्रतिबंध के सापेक्ष समुच्चय की मापनीयता
यदि X का उपसमुच्चय A μ-मापने योग्य है, तो यह X के किसी उपसमुच्चय B के लिए भी μB-मापने योग्य है।
एक मानचित्र f : X→Y और Y का एक उपसमुच्चय A दिया गया है, अगर f −1(A) μ-मापने योग्य है तो A f# μ-मापने योग्य है। अधिक सामान्यतः, f −1(A) μ-मापने योग्य है यदि और केवल यदि A, X के प्रत्येक उपसमुच्चय B के लिए f# (μB)-मापने योग्य है।
नियमित बाहरी माप
नियमित बाहरी माप की परिभाषा
एक समुच्चय X को देखते हुए, X पर एक बाहरी माप μ को नियमित कहा जाता है यदि किसी उपसमुच्चय को μ-मापने योग्य समुच्च द्वारा 'बाहर से' अनुमानित किया जा सकता है। औपचारिक रूप से, इसके लिए निम्नलिखित समतुल्य प्रतिबंध में से किसी एक की आवश्यकता होती है:
- X के किसी भी उपसमुच्चय A और किसी धनात्मक संख्या ε के लिए, X का एक μ-मापने योग्य उपसमुच्चय B उपस्थित होता है जिसमें A और μ(B) < μ(A) + ε होता है।
- X के किसी भी उपसमुच्चय A के लिए, X का एक μ-मापने योग्य उपसमुच्चय B उपस्थित है जिसमें A सम्मिलित है और ऐसा कि μ(B) = μ(A) है।
यह स्वचालित है कि दूसरी स्थिति पहली का तात्पर्य करती है; पहला उपसमुच्चय के न्यूनतम अनुक्रम के प्रतिच्छेदन पर विचार करके दूसरे का तात्पर्य करता है।
बाहरी माप से संबद्ध नियमित बाहरी माप
एक समुच्चय X पर एक बाहरी माप μ दिया गया है, ν : 2X→[0,∞] को परिभाषित करें
तब ν X पर एक नियमित बाहरी माप है जो X के सभी μ-मापने योग्य उपसमुच्चय को μ के समान माप प्रदान करता है। प्रत्येक μ-मापने योग्य उपसमुच्चय भी ν-मापने योग्य है, और परिमित ν-माप का प्रत्येक ν-मापने योग्य उपसमुच्चय भी μ-मापने योग्य है।
तो ν से संबंधित माप क्षेत्र में μ से संबंधित माप स्थान की तुलना में बड़ा σ-बीजगणित हो सकता है। लघुतर σ-बीजगणित के लिए ν और μ के प्रतिबंध समान हैं। बड़े σ-बीजगणित के अवयव जो छोटे σ-बीजगणित में सम्मिलित नहीं हैं, उनमें अनंत ν-माप और परिमित μ-माप होता है।
इस दृष्टिकोण से, ν को μ का विस्तार माना जा सकता है।
बाहरी माप और टोपोलॉजी
मान लीजिए (X, d) एक मीट्रिक माप है और φ X पर एक बाहरी माप है। यदि φ में वह गुण है
जब कभी भी
तब φ को मीट्रिक बाहरी माप कहा जाता है।
प्रमेय: अगर φ X पर एक मीट्रिक बाहरी माप है, तो X का प्रत्येक बोरेल उपसमुच्चय φ-मापने योग्य है। (X के बोरेल समुच्चय द्वारा उत्पन्न सबसे छोटे σ-बीजगणित के अवयव है।)
बाहरी मापों का निर्माण
किसी समुच्चय पर बाहरी माप बनाने की कई प्रक्रियाएँ हैं। नीचे दिया गया उत्कृष्ट मुनरो संदर्भ दो विशेष रूप से उपयोगी का वर्णन करता है जिन्हें विधि I और विधि II कहा जाता है।
विधि I
मान लीजिए कि X एक समुच्चय है, C, X के उपसमुच्चय का एक वर्ग है जिसमें रिक्त समुच्चय होता है और p, C पर एक गैर-नकारात्मक विस्तारित वास्तविक मूल्य वाला फलन है जो रिक्त समुच्चय पर लुप्त हो जाता है।
प्रमेय: मान लीजिए कि वर्ग C और फलन p ऊपर बताए अनुसार परिभाषित करते हैं
अर्थात्, इन्फ़िमम C के अवयव के सभी अनुक्रमों {Ai} पर विस्तारित होता है जो E को आच्छादित करते हैं, इस सम्मेलन के साथ कि यदि ऐसा कोई अनुक्रम उपस्थित नहीं है तो इन्फ़िमम अनंत है। तब φ X पर एक बाहरी माप है।
विधि II
दूसरी तकनीक मीट्रिक समष्टि पर बाहरी मापों के निर्माण के लिए अधिक उपयुक्त है, क्योंकि इससे मीट्रिक बाहरी माप प्राप्त होते हैं। मान लीजिए (X, d) एक मीट्रिक समष्टि है। जैसा कि ऊपर बताया गया है कि C, X के उपसमुच्चय का एक वर्ग है जिसमें रिक्त समुच्चय और p एक गैर-नकारात्मक विस्तारित वास्तविक मूल्यवान फलन है जो C पर है जो रिक्त समुच्चय पर लुप्त हो जाता है। प्रत्येक δ > 0 के लिए, मान लीजिए
और
स्पष्ट रुप से, φδ ≥ φδ' जब δ ≤ δ' क्योंकि δ घटने पर न्यूनतम को एक छोटे वर्ग में ले लिया जाता है। इस प्रकार
प्रस्तुत है (संभवतः अनंत)।
प्रमेय: φ0 X पर एक मीट्रिक बाहरी माप है।
यह वह निर्माण है जिसका उपयोग मीट्रिक समष्टि के लिए हॉसडॉर्फ़ माप की परिभाषा में किया जाता है।
यह भी देखें
टिप्पणियाँ
- ↑ Carathéodory 1968
- ↑ Aliprantis & Border 2006, pp. S379
- ↑ The original definition given above follows the widely cited texts of Federer and of Evans and Gariepy. Note that both of these books use non-standard terminology in defining a "measure" to be what is here called an "outer measure."
संदर्भ
- Aliprantis, C.D.; Border, K.C. (2006). Infinite Dimensional Analysis (3rd ed.). Berlin, Heidelberg, New York: Springer Verlag. ISBN 3-540-29586-0.
- Carathéodory, C. (1968) [1918]. Vorlesungen über reelle Funktionen (in German) (3rd ed.). Chelsea Publishing. ISBN 978-0828400381.
{{cite book}}
: CS1 maint: unrecognized language (link) - Evans, Lawrence C.; Gariepy, Ronald F. (2015). Measure theory and fine properties of functions. Revised edition. pp. xiv+299. ISBN 978-1-4822-4238-6.
{{cite book}}
:|work=
ignored (help) - Federer, H. (1996) [1969]. Geometric Measure Theory. Classics in Mathematics (1st ed reprint ed.). Berlin, Heidelberg, New York: Springer Verlag. ISBN 978-3540606567.
- Halmos, P. (1978) [1950]. Measure theory. Graduate Texts in Mathematics (2nd ed.). Berlin, Heidelberg, New York: Springer Verlag. ISBN 978-0387900889.
- Munroe, M. E. (1953). Introduction to Measure and Integration (1st ed.). Addison Wesley. ISBN 978-1124042978.
- Kolmogorov, A. N.; Fomin, S. V. (1970). Introductory Real Analysis. Richard A. Silverman transl. New York: Dover Publications. ISBN 0-486-61226-0.