हिल्बर्ट परिवर्तन

From Vigyanwiki
Revision as of 12:09, 9 July 2023 by alpha>Adityak

गणित और सिग्नल प्रोसेसिंग में, हिल्बर्ट ट्रांसफॉर्म एक विशिष्ट एकवचन अभिन्न अंग है जो एक वास्तविक चर का एक फ़ंक्शन, u(t) लेता है और एक वास्तविक चर H(u)(t) का एक और फ़ंक्शन उत्पन्न करता है। हिल्बर्ट रूपांतरण फ़ंक्शन के साथ कनवल्शन के कॉची प्रमुख मान द्वारा दिया गया है (देखें § परिभाषा)। हिल्बर्ट ट्रांसफ़ॉर्म का आवृत्ति डोमेन में एक विशेष रूप से सरल प्रतिनिधित्व है: यह किसी फ़ंक्शन के प्रत्येक आवृत्ति घटक को ±90° (π2 रेडियन) का एक चरण बदलाव प्रदान करता है, आवृत्ति के संकेत के आधार पर बदलाव का संकेत (देखें) § फूरियर रूपांतरण के साथ संबंध). हिल्बर्ट ट्रांसफ़ॉर्म सिग्नल प्रोसेसिंग में महत्वपूर्ण है, जहां यह वास्तविक-मूल्यवान सिग्नल u(t) के विश्लेषणात्मक प्रतिनिधित्व का एक घटक है। विश्लेषणात्मक कार्यों के लिए रीमैन-हिल्बर्ट समस्या के एक विशेष मामले को हल करने के लिए, हिल्बर्ट ट्रांसफॉर्म को पहली बार डेविड हिल्बर्ट द्वारा इस सेटिंग में प्रस्तुत किया गया था।

परिभाषा

u के हिल्बर्ट ट्रांसफॉर्म को फ़ंक्शन h(t) = 1/ π t के साथ u(t) के कनवल्शन के रूप में माना जा सकता है, जिसे कॉची कर्नेल के रूप में जाना जाता है। क्योंकि 1t, t = 0 के पार समाकलनीय नहीं है, कनवल्शन को परिभाषित करने वाला अभिन्न अंग हमेशा अभिसरण नहीं करता है। इसके बजाय, हिल्बर्ट परिवर्तन को कॉची प्रिंसिपल वैल्यू (यहां पी.वी. द्वारा दर्शाया गया) का उपयोग करके परिभाषित किया गया है। स्पष्ट रूप से, किसी फ़ंक्शन (या सिग्नल) का हिल्बर्ट रूपांतरण u(t) द्वारा दिया जाता है।

परन्तु यह अभिन्न एक प्रमुख मूल्य के रूप में उपस्तिथ हो। यह ठीक संयमित वितरण पी.वी. के साथ u का कनवल्शन है। p.v. 1/π t[1] वैकल्पिक रूप से, चर को बदलकर, मुख्य मूल्य अभिन्न को स्पष्ट रूप से[2] के रूप में लिखा जा सकता है।


जब हिल्बर्ट ट्रांसफ़ॉर्म को किसी फ़ंक्शन u पर लगातार दो बार लागू किया जाता है, तो परिणाम होता है:


परन्तु कि दोनों पुनरावृत्तियों को परिभाषित करने वाले अभिन्न अंग एक उपयुक्त अर्थ में अभिसरित हों। विशेषकर, व्युत्क्रम परिवर्तन है।

. फूरियर रूपांतरण पर हिल्बर्ट परिवर्तन के प्रभाव पर विचार करके इस तथ्य को सबसे आसानी से देखा जा सकता है u(t) (देखना § Relationship with the Fourier transform, नीचे)।

ऊपरी आधे तल में एक विश्लेषणात्मक कार्य के लिए, हिल्बर्ट परिवर्तन वास्तविक भाग और सीमा मूल्यों के काल्पनिक भाग के बीच संबंध का वर्णन करता है। अर्थात यदि f(z) ऊपरी आधे जटिल तल में विश्लेषणात्मक है {z : Im{z} > 0}, और u(t) = Re{f (t + 0·i)}, तब Im{f (t + 0·i)} = H(u)(t) एक योगात्मक स्थिरांक तक, बशर्ते यह हिल्बर्ट परिवर्तन मौजूद हो।

नोटेशन

सिग्नल प्रोसेसिंग में हिल्बर्ट रूपांतरण u(t) को सामान्यतः द्वारा दर्शाया जाता है .[3] हालाँकि, गणित में, फूरियर रूपांतरण को दर्शाने के लिए इस संकेतन का पहले से ही बड़े पैमाने पर उपयोग किया जाता है u(t).[4] कभी-कभी, हिल्बर्ट परिवर्तन को इसके द्वारा दर्शाया जा सकता है . इसके अलावा, कई स्रोत हिल्बर्ट परिवर्तन को यहां परिभाषित नकारात्मक के रूप में परिभाषित करते हैं।[5]


इतिहास

हिल्बर्ट परिवर्तन हिल्बर्ट के 1905 में रीमैन द्वारा विश्लेषणात्मक कार्यों से संबंधित एक समस्या पर किए गए कार्य में उत्पन्न हुआ,[6][7] जिसे रीमैन-हिल्बर्ट समस्या के नाम से जाना जाता है। हिल्बर्ट का कार्य मुख्य रूप से वृत्त पर परिभाषित कार्यों के लिए हिल्बर्ट परिवर्तन से संबंधित था।[8][9] डिस्क्रीट हिल्बर्ट ट्रांसफ़ॉर्म से संबंधित उनके पहले के कुछ काम गौटिंगेन में दिए गए उनके व्याख्यानों से मिलते हैं। परिणाम बाद में हरमन वेइल ने अपने शोध प्रबंध में प्रकाशित किए।[10] शूर ने असतत हिल्बर्ट परिवर्तन के बारे में हिल्बर्ट के परिणामों में सुधार किया और उन्हें अभिन्न मामले तक बढ़ाया।[11] ये परिणाम रिक्त स्थान Lp space| तक ही सीमित थेL2 और 2. 1928 में, मार्सेल रिज़्ज़ ने साबित किया कि हिल्बर्ट परिवर्तन को आपके लिए परिभाषित किया जा सकता है (एलपी स्पेस|एलपीस्पेस) के लिए 1 < p < ∞, कि हिल्बर्ट ट्रांसफॉर्म एक परिबद्ध संचालिका है के लिए 1 < p < ∞, और समान परिणाम वृत्त पर हिल्बर्ट परिवर्तन के साथ-साथ असतत हिल्बर्ट परिवर्तन के लिए भी लागू होते हैं।[12] हिल्बर्ट परिवर्तन एंटोनी ज़िगमंड और अल्बर्टो काल्डेरोन के लिए एकवचन इंटीग्रल के अध्ययन के दौरान एक प्रेरक उदाहरण था।[13] उनकी जांच ने आधुनिक हार्मोनिक विश्लेषण में मौलिक भूमिका निभाई है। हिल्बर्ट परिवर्तन के विभिन्न सामान्यीकरण, जैसे कि बिलिनियर और ट्रिलिनियर हिल्बर्ट परिवर्तन आज भी अनुसंधान के सक्रिय क्षेत्र हैं।

फूरियर रूपांतरण के साथ संबंध

हिल्बर्ट परिवर्तन एक गुणक (फूरियर विश्लेषण) है।[14] का गुणक H है σH(ω) = −i sgn(ω), कहाँ sgn साइन फ़ंक्शन है. इसलिए:

कहाँ फूरियर रूपांतरण को दर्शाता है। तब से sgn(x) = sgn(2πx), इससे यह निष्कर्ष निकलता है कि यह परिणाम की तीन सामान्य परिभाषाओं पर लागू होता है .

यूलर के सूत्र द्वारा,

इसलिए, H(u)(t) के नकारात्मक आवृत्ति घटकों के चरण को स्थानांतरित करने का प्रभाव पड़ता है u(t)+90° (π2 रेडियन) और सकारात्मक आवृत्ति घटकों का चरण -90°, और i·H(u)(t) में सकारात्मक आवृत्ति घटकों को पुनर्स्थापित करने का प्रभाव होता है जबकि नकारात्मक आवृत्ति वाले को अतिरिक्त +90° स्थानांतरित किया जाता है, जिसके परिणामस्वरूप उनका निषेध होता है (यानी, −1 से गुणा)।

जब हिल्बर्ट ट्रांसफॉर्म को दो बार लागू किया जाता है, तो नकारात्मक और सकारात्मक आवृत्ति घटकों का चरण u(t) को क्रमशः +180° और -180° द्वारा स्थानांतरित किया जाता है, जो समतुल्य राशियाँ हैं। संकेत अस्वीकृत है; अर्थात।, H(H(u)) = −u, क्योंकि


चयनित हिल्बर्ट परिवर्तनों की तालिका

निम्न तालिका में, आवृत्ति पैरामीटर यह सचमुच का है।

Signal
Hilbert transform[fn 1]
[fn 2]

[fn 2]


(see Dawson function)
Sinc function
Dirac delta function
Characteristic Function

टिप्पणियाँ

  1. Some authors (e.g., Bracewell) use our −H as their definition of the forward transform. A consequence is that the right column of this table would be negated.
  2. 2.0 2.1 The Hilbert transform of the sin and cos functions can be defined by taking the principal value of the integral at infinity. This definition agrees with the result of defining the Hilbert transform distributionally.

हिल्बर्ट परिवर्तनों की एक विस्तृत तालिका उपलब्ध है।[15]

ध्यान दें कि किसी स्थिरांक का हिल्बर्ट रूपांतरण शून्य है।

परिभाषा का क्षेत्र

यह किसी भी तरह से स्पष्ट नहीं है कि हिल्बर्ट परिवर्तन बिल्कुल भी अच्छी तरह से परिभाषित है, क्योंकि इसे परिभाषित करने वाला अनुचित अभिन्न अंग एक उपयुक्त अर्थ में अभिसरण होना चाहिए। हालाँकि, हिल्बर्ट परिवर्तन कार्यों की एक विस्तृत श्रेणी के लिए अच्छी तरह से परिभाषित है, अर्थात् के लिए 1 < p < ∞.

अधिक सटीक रूप से, यदि u में है के लिए 1 < p < ∞, फिर अनुचित अभिन्न को परिभाषित करने वाली सीमा

लगभग हर के लिए मौजूद है t. सीमा समारोह भी में है और वास्तव में यह अनुचित अभिन्न के माध्य की भी सीमा है। वह है,

जैसा ε → 0 में Lp मानक, साथ ही बिंदुवार लगभग हर जगह, #Titchmarsh.27s प्रमेय द्वारा।[16]

यदि p = 1, हिल्बर्ट परिवर्तन अभी भी लगभग हर जगह बिंदुवार रूप से अभिसरण करता है, लेकिन स्थानीय स्तर पर भी, स्वयं एकीकृत होने में विफल हो सकता है।[17] विशेष रूप से, इस मामले में माध्य में अभिसरण सामान्यतः नहीं होता है। एक का हिल्बर्ट रूपांतरण {{math|L1}हालाँकि, } फ़ंक्शन अभिसरण करता है L1-कमजोर, और हिल्बर्ट ट्रांसफॉर्म एक सीमित ऑपरेटर है L1 को L1,w.[18] (विशेष रूप से, चूंकि हिल्बर्ट ट्रांसफॉर्म भी एक गुणक ऑपरेटर है L2, मार्सिंकिविज़ इंटरपोलेशन और एक द्वैत तर्क एक वैकल्पिक प्रमाण प्रस्तुत करता है H पर परिबद्ध है Lp.)

गुण

सीमा

अगर 1 < p < ∞, फिर हिल्बर्ट बदल जाता है एक परिबद्ध रैखिक संचालिका है, जिसका अर्थ है कि एक स्थिरांक मौजूद है Cp ऐसा है कि

सभी के लिए .[19] सर्वोत्तम स्थिरांक द्वारा दिया गया है[20]
सर्वोत्तम खोजने का एक आसान तरीका के लिए 2 की शक्ति होना तथाकथित कोटलर की पहचान के माध्यम से है सभी वास्तविक मूल्यवानों के लिए f. आवधिक हिल्बर्ट परिवर्तन के लिए भी वही सर्वोत्तम स्थिरांक मौजूद हैं।

हिल्बर्ट परिवर्तन की सीमा का तात्पर्य है सममित आंशिक योग ऑपरेटर का अभिसरण

को f में .[21]


स्व-विरोधी संयुक्तता

हिल्बर्ट ट्रांसफ़ॉर्म, द्वैत युग्मन के सापेक्ष एक स्व-विरोधी सहायक ऑपरेटर है और दोहरी जगह , कहाँ p और q होल्डर संयुग्म हैं और 1 < p, q < ∞. प्रतीकात्मक रूप से,

के लिए और .[22]

उलटा परिवर्तन

हिल्बर्ट परिवर्तन एक विरोधी आक्रमण है,[23] मतलब है कि

बशर्ते प्रत्येक परिवर्तन अच्छी तरह से परिभाषित हो। तब से H स्थान सुरक्षित रखता है , इसका तात्पर्य विशेष रूप से यह है कि हिल्बर्ट परिवर्तन उलटा है , ओर वो


जटिल संरचना

क्योंकि H2 = −I (I पहचान ऑपरेटर है) वास्तविक-मूल्यवान कार्यों के वास्तविक बानाच स्थान पर , हिल्बर्ट परिवर्तन इस बानाच स्थान पर एक रैखिक जटिल संरचना को परिभाषित करता है। विशेषकर, जब p = 2, हिल्बर्ट रूपांतरण हिल्बर्ट को वास्तविक-मूल्यवान कार्यों का स्थान देता है एक जटिल हिल्बर्ट स्थान की संरचना।

हिल्बर्ट के (जटिल) ईजेनस्टेट्स हार्डी स्पेस एच वर्ग में ऊपरी और निचले आधे विमानों में होलोमोर्फिक फ़ंक्शन के रूप में प्रतिनिधित्व को स्वीकार करते हैं |H2 पैली-वीनर प्रमेय द्वारा।

भेदभाव

औपचारिक रूप से, हिल्बर्ट रूपांतरण का व्युत्पन्न व्युत्पन्न का हिल्बर्ट रूपांतरण है, यानी ये दो रैखिक ऑपरेटर आवागमन करते हैं:

इस पहचान को दोहराते हुए,

जैसा कि कहा गया है, यह पूरी तरह सत्य है u और यह पहला है k डेरिवेटिव का संबंध है .[24] कोई इसे आवृत्ति डोमेन में आसानी से जांच सकता है, जहां विभेदन गुणा हो जाता है ω.

संकल्प

हिल्बर्ट परिवर्तन को औपचारिक रूप से वितरण (गणित)#टेम्पर्ड वितरण और फूरियर परिवर्तन के साथ एक कनवल्शन के रूप में महसूस किया जा सकता है[25]

इस प्रकार औपचारिक रूप से,

हालाँकि, एक प्राथमिकता के लिए इसे केवल परिभाषित किया जा सकता है u कॉम्पैक्ट समर्थन का वितरण। इसके साथ कुछ हद तक कठोरता से काम करना संभव है क्योंकि कॉम्पैक्ट रूप से समर्थित फ़ंक्शन (जो वितरण एक फोर्टियोरी हैं) घने (टोपोलॉजी) हैं Lp. वैकल्पिक रूप से, कोई इस तथ्य का उपयोग कर सकता है कि h(t) फ़ंक्शन का वितरणात्मक व्युत्पन्न है log|t|/π; अर्थात

अधिकांश परिचालन उद्देश्यों के लिए हिल्बर्ट परिवर्तन को एक कनवल्शन के रूप में माना जा सकता है। उदाहरण के लिए, औपचारिक अर्थ में, किसी कनवल्शन का हिल्बर्ट रूपांतरण हिल्बर्ट ट्रांसफॉर्म का कनवल्शन है जो दोनों कारकों में से केवल एक पर लागू होता है:

यह पूरी तरह सच है अगर u और v सघन रूप से समर्थित वितरण हैं, क्योंकि उस स्थिति में,

एक उचित सीमा तक जाने पर, यह इस प्रकार भी सत्य है यदि uLp और vLq उसे उपलब्ध कराया

टिचमर्श के कारण एक प्रमेय से।[26]

अपरिवर्तनीय

हिल्बर्ट ट्रांसफॉर्म में निम्नलिखित अपरिवर्तनीय गुण हैं .

  • यह अनुवाद के साथ चलता है। यानी यह ऑपरेटरों के साथ आवागमन करता है Ta f(x) = f(x + a) सभी के लिए a में
  • यह सकारात्मक फैलाव के साथ संचार करता है। यानी यह ऑपरेटरों के साथ आवागमन करता है Mλ f (x) = f (λ x) सभी के लिए λ > 0.
  • यह प्रतिबिम्ब के साथ प्रतिसंक्रामकता है R f (x) = f (−x).

गुणक स्थिरांक तक, हिल्बर्ट रूपांतरण एकमात्र परिबद्ध संचालिका है L2इन संपत्तियों के साथ।[27]

वास्तव में ऑपरेटरों का एक व्यापक समूह है जो हिल्बर्ट ट्रांसफॉर्म के साथ आवागमन करता है। समूह एकात्मक संचालकों द्वारा कार्य Ug अंतरिक्ष पर सूत्र द्वारा

यह एकात्मक निरूपण प्रमुख श्रृंखला निरूपण का एक उदाहरण है इस मामले में यह कम करने योग्य है, दो अपरिवर्तनीय उप-स्थानों के ऑर्थोगोनल योग के रूप में विभाजित होता है, हार्डी स्पेस और यह संयुग्मित है। ये के रिक्त स्थान हैं L2 ऊपरी और निचले आधे तलों पर होलोमोर्फिक फ़ंक्शंस के सीमा मान। और इसका संयुग्म बिल्कुल उन्हीं से मिलकर बना है L2 फूरियर रूपांतरण के साथ कार्य क्रमशः वास्तविक अक्ष के नकारात्मक और सकारात्मक भागों पर लुप्त हो जाते हैं। चूँकि हिल्बर्ट परिवर्तन बराबर है H = −i (2P − I), साथ P ओर्थोगोनल प्रक्षेपण होने के नाते पर और I पहचान ऑपरेटर, यह उसका अनुसरण करता है और इसके ओर्थोगोनल पूरक के eigenspaces हैं H eigenvalues ​​​​के लिए ±i. दूसरे शब्दों में, H ऑपरेटरों के साथ आवागमन करता है Ug. ऑपरेटरों के प्रतिबंध Ug को और इसका संयुग्म अघुलनशील निरूपण देता है - असतत श्रृंखला प्रतिनिधित्व की तथाकथित सीमा।[28]


परिभाषा के क्षेत्र का विस्तार

वितरण का हिल्बर्ट रूपांतरण

हिल्बर्ट परिवर्तन को वितरण के कुछ स्थानों तक विस्तारित करना संभव है (गणित) (Pandey 1996, Chapter 3). चूँकि हिल्बर्ट परिवर्तन विभेदन के साथ चलता है, और एक परिबद्ध संचालिका है Lp, H सोबोलेव रिक्त स्थान की व्युत्क्रम सीमा पर निरंतर परिवर्तन देने के लिए प्रतिबंधित है:

फिर हिल्बर्ट परिवर्तन को दोहरे स्थान पर परिभाषित किया जा सकता है , निरूपित , को मिलाकर Lp वितरण. यह द्वैत युग्म द्वारा पूरा किया जाता है:
के लिए , परिभाषित करना:

गेलफैंड और शिलोव के दृष्टिकोण से टेम्पर्ड वितरण के क्षेत्र में हिल्बर्ट परिवर्तन को परिभाषित करना संभव है,[29] लेकिन अभिन्नता में विलक्षणता के कारण काफी अधिक देखभाल की आवश्यकता है।

बंधे हुए कार्यों का हिल्बर्ट रूपांतरण

हिल्बर्ट ट्रांसफ़ॉर्म को फ़ंक्शंस के लिए परिभाषित किया जा सकता है साथ ही, लेकिन इसमें कुछ संशोधनों और चेतावनियों की आवश्यकता है। ठीक से समझें तो, हिल्बर्ट मानचित्रों को रूपांतरित करता है बाउंडेड माध्य दोलन (बीएमओ) वर्गों के बानाच स्थान के लिए।

भोलेपन से व्याख्या की जाए तो, एक बंधे हुए फ़ंक्शन का हिल्बर्ट रूपांतरण स्पष्ट रूप से खराब परिभाषित है। उदाहरण के लिए, साथ u = sgn(x), अभिन्न परिभाषा H(u) लगभग हर जगह विचलन करता है ±∞. ऐसी कठिनाइयों को कम करने के लिए, हिल्बर्ट का रूपांतरण किया गया L इसलिए फ़ंक्शन को इंटीग्रल के निम्नलिखित नियमितीकरण (भौतिकी) रूप द्वारा परिभाषित किया गया है

जहां ऊपर बताया गया है h(x) = 1/πx और

संशोधित परिवर्तन H काल्डेरोन और ज़िगमंड द्वारा एक सामान्य परिणाम से कॉम्पैक्ट समर्थन के कार्यों पर एक योगात्मक स्थिरांक तक मूल परिवर्तन से सहमत है।[30] इसके अलावा, परिणामी अभिन्न अंग लगभग हर जगह, और बीएमओ मानदंड के संबंध में, बंधे हुए माध्य दोलन के एक कार्य में परिवर्तित होता है।

फ़ेफ़रमैन के काम का एक गहरा परिणाम[31] क्या यह कि एक फ़ंक्शन परिबद्ध माध्य दोलन का है यदि और केवल यदि इसका रूप है f + H(g) कुछ के लिए .

संयुग्मी कार्य

हिल्बर्ट परिवर्तन को कार्यों की एक जोड़ी के संदर्भ में समझा जा सकता है f(x) और g(x) ऐसा कि फ़ंक्शन

एक होलोमोर्फिक फ़ंक्शन का सीमा मान है F(z) ऊपरी आधे तल में।[32] इन परिस्थितियों में, यदि f और g पर्याप्त रूप से एकीकृत हैं, तो एक दूसरे का हिल्बर्ट रूपांतरण है।

लगता है कि फिर, पॉइसन अभिन्न के सिद्धांत द्वारा, f ऊपरी आधे तल में एक अद्वितीय हार्मोनिक विस्तार को स्वीकार करता है, और यह विस्तार किसके द्वारा दिया जाता है

जो का कनवल्शन है f पॉइसन कर्नेल के साथ

इसके अलावा, एक अद्वितीय हार्मोनिक फ़ंक्शन भी है v ऊपरी आधे तल में इस प्रकार परिभाषित किया गया है F(z) = u(z) + i v(z) होलोमोर्फिक है और
यह हार्मोनिक फ़ंक्शन से प्राप्त होता है fसंयुग्मित पॉइसन कर्नेल के साथ एक कनवल्शन लेकर

इस प्रकार
दरअसल, कॉची कर्नेल के वास्तविक और काल्पनिक भाग हैं
ताकि F = u + i v कॉची के अभिन्न सूत्र द्वारा होलोमोर्फिक है।

कार्यक्रम v से प्राप्त u इस तरह से हार्मोनिक संयुग्म कहा जाता है u. की (गैर-स्पर्शरेखा) सीमा सीमा v(x,y) जैसा y → 0 का हिल्बर्ट रूपांतरण है f. इस प्रकार, संक्षेप में,


टिचमर्श का प्रमेय

टिचमार्श का प्रमेय (एडवर्ड चार्ल्स टिचमार्श के नाम पर|ई.सी. टिचमार्श जिन्होंने इसे अपने 1937 के काम में शामिल किया था) ऊपरी आधे तल में होलोमोर्फिक कार्यों के सीमा मूल्यों और हिल्बर्ट परिवर्तन के बीच संबंध को सटीक बनाता है।[33] यह एक जटिल-मूल्य वाले वर्ग-अभिन्न फ़ंक्शन के लिए आवश्यक और पर्याप्त शर्तें देता है F(x) वास्तविक रेखा पर हार्डी स्पेस में किसी फ़ंक्शन का सीमा मान होना चाहिए H2(U) ऊपरी आधे तल में होलोमोर्फिक कार्यों का U.

प्रमेय बताता है कि एक जटिल-मूल्य वाले वर्ग-अभिन्न फ़ंक्शन के लिए निम्नलिखित स्थितियाँ समतुल्य हैं:

  • F(x) जैसी सीमा है zx एक होलोमोर्फिक फ़ंक्शन का F(z) ऊपरी आधे तल में ऐसा कि
  • के वास्तविक और काल्पनिक भाग F(x) एक दूसरे के हिल्बर्ट रूपांतरण हैं।
  • फूरियर रूपांतरण के लिए गायब हो जाता है x < 0.

वर्ग के कार्यों के लिए कमजोर परिणाम सत्य है Lp के लिए p > 1.[34] विशेष रूप से, यदि F(z) एक होलोमोर्फिक फ़ंक्शन है जैसे कि

सभी के लिए y, तो एक जटिल-मूल्यवान फ़ंक्शन है F(x) में ऐसा है कि F(x + i y) → F(x) में Lp मानक के रूप में y → 0 (साथ ही लगभग हर जगह बिंदुवार पकड़)। आगे,

कहाँ f एक वास्तविक-मूल्यवान फ़ंक्शन है और g हिल्बर्ट ट्रांसफॉर्म (वर्ग का) है Lp) का f.

इस मामले में यह सच नहीं है p = 1. वास्तव में, एक का हिल्बर्ट रूपांतरण L1 समारोह f दूसरे के मध्य में अभिसरित होने की आवश्यकता नहीं है L1 समारोह। फिर भी,[35] हिल्बर्ट रूपांतरण f लगभग हर जगह एक परिमित कार्य में परिवर्तित हो जाता है g ऐसा है कि

यह परिणाम डिस्क में हार्डी फ़ंक्शंस के लिए एंड्री कोलमोगोरोव द्वारा सीधे अनुरूप है।[36] हालांकि आमतौर पर इसे टिचमार्श प्रमेय कहा जाता है, परिणाम में हार्डी, पैली और वीनर (पेली-वीनर प्रमेय देखें) सहित अन्य लोगों के बहुत से काम शामिल हैं, साथ ही रिज़, हिले और टैमरकिन का काम भी शामिल है।[37]


रीमैन-हिल्बर्ट समस्या

रीमैन-हिल्बर्ट समस्या का एक रूप कार्यों के जोड़े की पहचान करना चाहता है F+ और F ऐसा है कि F+ ऊपरी आधे तल पर होलोमोर्फिक फ़ंक्शन है और F निचले आधे तल पर होलोमोर्फिक है, जैसे कि x वास्तविक अक्ष के अनुदिश,

कहाँ f(x) का कुछ वास्तविक-मूल्यवान कार्य दिया गया है . इस समीकरण के बाएँ पक्ष को या तो सीमा के अंतर के रूप में समझा जा सकता है F± उपयुक्त अर्ध-तलों से, या हाइपरफ़ंक्शन वितरण के रूप में। इस फॉर्म के दो कार्य रीमैन-हिल्बर्ट समस्या का समाधान हैं।

औपचारिक रूप से, यदि F± रीमैन-हिल्बर्ट समस्या का समाधान करें

फिर हिल्बर्ट का रूपांतरण f(x) द्वारा दिया गया है[38]


हिल्बर्ट वृत्त पर परिवर्तन

एक आवधिक समारोह के लिए f वृत्ताकार हिल्बर्ट परिवर्तन परिभाषित किया गया है:

सर्कुलर हिल्बर्ट ट्रांसफॉर्म का उपयोग हार्डी स्पेस का लक्षण वर्णन देने और फूरियर श्रृंखला में संयुग्म फ़ंक्शन के अध्ययन में किया जाता है। गिरी,

इसे हिल्बर्ट कर्नेल के रूप में जाना जाता है क्योंकि इसी रूप में हिल्बर्ट परिवर्तन का मूल रूप से अध्ययन किया गया था।[8]

हिल्बर्ट कर्नेल (गोलाकार हिल्बर्ट परिवर्तन के लिए) कॉची कर्नेल बनाकर प्राप्त किया जा सकता है 1x आवधिक. अधिक सटीक रूप से, के लिए x ≠ 0

वृत्ताकार हिल्बर्ट परिवर्तन के बारे में कई परिणाम इस पत्राचार से हिल्बर्ट परिवर्तन के संगत परिणामों से प्राप्त किए जा सकते हैं।

एक और अधिक सीधा कनेक्शन केली ट्रांसफॉर्म द्वारा प्रदान किया गया है C(x) = (xi) / (x + i), जो वास्तविक रेखा को वृत्त पर और ऊपरी आधे तल को यूनिट डिस्क पर ले जाता है। यह एकात्मक मानचित्र को प्रेरित करता है

का L2(T)पर परिचालक Uहार्डी स्थान रखता है H2(T) हार्डी स्थान पर .[39]

सिग्नल प्रोसेसिंग में हिल्बर्ट रूपांतरण

बेड्रोसियन का प्रमेय

बेड्रोसियन के प्रमेय में कहा गया है कि गैर-अतिव्यापी स्पेक्ट्रा के साथ कम-पास और उच्च-पास सिग्नल के उत्पाद का हिल्बर्ट रूपांतरण कम-पास सिग्नल के उत्पाद और उच्च-पास सिग्नल के हिल्बर्ट रूपांतरण द्वारा दिया जाता है, या

कहाँ fLP और fHP क्रमशः निम्न- और उच्च-पास सिग्नल हैं।[40] संचार संकेतों की एक श्रेणी जिस पर यह लागू होता है उसे नैरोबैंड सिग्नल मॉडल कहा जाता है। उस श्रेणी का एक सदस्य उच्च-आवृत्ति साइनसॉइडल वाहक का आयाम मॉड्यूलेशन है:

कहाँ um(t) संकीर्ण बैंडविड्थ संदेश तरंग है, जैसे आवाज या संगीत। फिर बेड्रोसियन के प्रमेय द्वारा:[41]


विश्लेषणात्मक प्रतिनिधित्व

एक विशिष्ट प्रकार का #Conjugate फ़ंक्शन है:

के विश्लेषणात्मक प्रतिनिधित्व के रूप में जाना जाता है यह नाम इसकी गणितीय सुगमता को दर्शाता है, जिसका मुख्य कारण यूलर का सूत्र है। बेडरोसियन के प्रमेय को नैरोबैंड मॉडल पर लागू करने पर, विश्लेषणात्मक प्रतिनिधित्व है:[42]

 

 

 

 

(Eq.1)

फूरियर रूपांतरण गुण इंगित करता है कि यह जटिल Heterodyne ऑपरेशन सभी नकारात्मक आवृत्ति घटकों को स्थानांतरित कर सकता है um(t) 0 हर्ट्ज से ऊपर। उस स्थिति में, परिणाम का काल्पनिक भाग वास्तविक भाग का हिल्बर्ट रूपांतरण है। यह हिल्बर्ट रूपांतरण उत्पन्न करने का एक अप्रत्यक्ष तरीका है।

कोण (चरण/आवृत्ति) मॉड्यूलेशन

फार्म:[43]

कोण मॉड्यूलेशन कहा जाता है, जिसमें चरण मॉड्यूलेशन और आवृत्ति मॉड्यूलेशन दोनों शामिल हैं। तात्कालिक चरण#तात्कालिक आवृत्ति हैपर्याप्त रूप से बड़े के लिए ω, की तुलना में :

और:


सिंगल साइडबैंड मॉड्यूलेशन (एसएसबी)

कब um(t) मेंEq.1 एक विश्लेषणात्मक प्रतिनिधित्व भी है (एक संदेश तरंग का), अर्थात:

परिणाम एकल साइडबैंड मॉड्यूलेशन है:

जिसका संचरित घटक है:[44][45]


कारण-कारण

कार्यक्रम एक कनवल्शन में व्यावहारिक कार्यान्वयन के लिए दो कार्य-कारण-आधारित चुनौतियाँ प्रस्तुत करता है (0 पर इसके अपरिभाषित मान के अतिरिक्त):

  • इसकी अवधि अनंत (तकनीकी रूप से अनंत समर्थन (गणित)) है। परिमित-लंबाई विंडो फ़ंक्शन परिवर्तन की प्रभावी आवृत्ति सीमा को कम कर देता है; छोटी खिड़कियों के परिणामस्वरूप कम और उच्च आवृत्तियों पर अधिक नुकसान होता है। चतुर्भुज फ़िल्टर भी देखें।
  • यह एक कारणात्मक फ़िल्टर|गैर-कारण फ़िल्टर है। तो एक विलंबित संस्करण, आवश्यक है। इसके बाद संबंधित आउटपुट में देरी हो जाती है विश्लेषणात्मक संकेत का काल्पनिक भाग बनाते समय, स्रोत (वास्तविक भाग) में भी देरी होनी चाहिए .

असतत हिल्बर्ट रूपांतरण

फ़ाइल: बैंडपास डिस्क्रीट हिल्बर्ट ट्रांसफ़ॉर्म फ़िल्टर.tif|thumb|400px|right|चित्र 1: फ़िल्टर जिसकी आवृत्ति प्रतिक्रिया नाइक्विस्ट आवृत्ति के लगभग 95% तक बैंडलिमिटेड है फ़ाइल:हाईपास डिस्क्रीट हिल्बर्ट ट्रांसफ़ॉर्म फ़िल्टर.tif|thumb|400px|right|चित्र 2: हाईपास आवृत्ति प्रतिक्रिया के साथ हिल्बर्ट ट्रांसफ़ॉर्म फ़िल्टर

चित्र तीन।
चित्र 4. हिल्बर्ट रूपांतरण cos(ωt) है sin(ωt). यह आंकड़ा दर्शाता है sin(ωt) और MATLAB लाइब्रेरी फ़ंक्शन द्वारा गणना किए गए दो अनुमानित हिल्बर्ट परिवर्तन, hilbert()
चित्र 5. टुकड़े-टुकड़े कनवल्शन का उपयोग करके कोसाइन फ़ंक्शन के असतत हिल्बर्ट रूपांतरण

एक अलग कार्य के लिए, , असतत-समय फूरियर रूपांतरण (डीटीएफटी) के साथ, , और असतत हिल्बर्ट परिवर्तन , का DTFT क्षेत्र में π < ω < π द्वारा दिया गया है:

एक असतत चर (अनुक्रम) के कन्वोल्यूशन प्रमेय#फ़ंक्शन का उपयोग करते हुए उलटा DTFT है:[46]

कहाँ

जो एक अनंत आवेग प्रतिक्रिया (आईआईआर) है। जब कनवल्शन को संख्यात्मक रूप से निष्पादित किया जाता है, तो एक सीमित आवेग प्रतिक्रिया सन्निकटन को प्रतिस्थापित किया जाता है h[n], जैसा कि चित्र 1 में दिखाया गया है। विषम संख्या में एंटी-सिमेट्रिक गुणांक वाले एक एफआईआर फिल्टर को टाइप III कहा जाता है, जो स्वाभाविक रूप से आवृत्तियों 0 और नाइक्विस्ट पर शून्य परिमाण की प्रतिक्रियाओं को प्रदर्शित करता है, जिसके परिणामस्वरूप यह मामला एक बैंडपास फिल्टर आकार में होता है। टाइप IV डिज़ाइन (एंटी-सिमेट्रिक गुणांक की सम संख्या) को चित्र 2 में दिखाया गया है। चूंकि नाइक्विस्ट आवृत्ति पर परिमाण प्रतिक्रिया कम नहीं होती है, यह ऑड-टैप फिल्टर की तुलना में एक आदर्श हिल्बर्ट ट्रांसफार्मर का थोड़ा बेहतर अनुमान लगाता है। हालाँकि

  • एक विशिष्ट (यानी ठीक से फ़िल्टर किया गया और नमूना लिया गया) u[n] अनुक्रम में नाइक्विस्ट आवृत्ति पर कोई उपयोगी घटक नहीं है।
  • टाइप IV आवेग प्रतिक्रिया के लिए एक की आवश्यकता होती है 12 में नमूना बदलाव h[n] अनुक्रम। इसके कारण शून्य-मूल्य वाले गुणांक गैर-शून्य हो जाते हैं, जैसा कि चित्र 2 में देखा गया है। इसलिए टाइप III डिज़ाइन संभावित रूप से टाइप IV की तुलना में दोगुना कुशल है।
  • टाइप III डिज़ाइन का समूह विलंब नमूनों की एक पूर्णांक संख्या है, जो संरेखित करने की सुविधा प्रदान करता है साथ एक विश्लेषणात्मक संकेत बनाने के लिए. टाइप IV का समूह विलंब दो नमूनों के बीच आधा है।

MATLAB फ़ंक्शन, hilbert(u,N),[47] आवधिक योग के साथ एक u[n] अनुक्रम को सम्मिलित करता है:[upper-alpha 1]

   [upper-alpha 2][upper-alpha 3]

और एक चक्र लौटाता है (N नमूने) एक जटिल-मूल्य वाले आउटपुट अनुक्रम के काल्पनिक भाग में आवधिक परिणाम देते हैं। कनवल्शन को आवृत्ति डोमेन में सरणी के उत्पाद के रूप में कार्यान्वित किया जाता हैके नमूनों के साथ i sgn(ω) वितरण (जिसके वास्तविक और काल्पनिक घटक सभी केवल 0 या हैं±1). चित्र 3 आधे-चक्र की तुलना करता है hN[n] के बराबर लंबाई वाले हिस्से के साथ h[n]. के लिए एक एफआईआर सन्निकटन दिया गया द्वारा चिह्नित प्रतिस्थापन के लिए i sgn(ω) नमूनों से कनवल्शन का एफआईआर संस्करण प्राप्त होता है।

आउटपुट अनुक्रम का वास्तविक भाग मूल इनपुट अनुक्रम है, ताकि जटिल आउटपुट एक विश्लेषणात्मक संकेत हो u[n]. जब इनपुट शुद्ध कोसाइन का एक खंड होता है, तो दो अलग-अलग मानों के लिए परिणामी कनवल्शन होता है N को चित्र 4 (लाल और नीले प्लॉट) में दर्शाया गया है। एज प्रभाव परिणाम को शुद्ध साइन फ़ंक्शन (हरा प्लॉट) होने से रोकते हैं। तब से hN[n] एक एफआईआर अनुक्रम नहीं है, प्रभावों की सैद्धांतिक सीमा संपूर्ण आउटपुट अनुक्रम है। लेकिन साइन फ़ंक्शन के अंतर किनारों से दूरी के साथ कम होते जाते हैं। पैरामीटर N आउटपुट अनुक्रम लंबाई है। यदि यह इनपुट अनुक्रम की लंबाई से अधिक है, तो शून्य-मूल्य वाले तत्वों को जोड़कर इनपुट को संशोधित किया जाता है। अधिकांश मामलों में, इससे मतभेदों का परिमाण कम हो जाता है। लेकिन उनकी अवधि अंतर्निहित उत्थान और पतन के समय पर हावी होती है h[n] आवेग प्रतिक्रिया।

जब ओवरलैप-सेव विधि | ओवरलैप-सेव नामक विधि का उपयोग लंबे समय तक कनवल्शन करने के लिए किया जाता है, तो किनारे के प्रभावों की सराहना महत्वपूर्ण होती है u[n] अनुक्रम। लंबाई के खंड N आवधिक कार्य के साथ जुड़े हुए हैं:

जब गैर-शून्य मानों की अवधि है आउटपुट अनुक्रम शामिल है NM + 1 के नमूने M − 1 आउटपुट को प्रत्येक ब्लॉक से हटा दिया जाता है N, और अंतराल को रोकने के लिए इनपुट ब्लॉक को उस मात्रा से ओवरलैप किया जाता है।

चित्र 5 आईआईआर हिल्बर्ट(·) फ़ंक्शन और एफआईआर सन्निकटन दोनों का उपयोग करने का एक उदाहरण है। उदाहरण में, एक कोसाइन फ़ंक्शन के असतत हिल्बर्ट रूपांतरण की गणना करके एक साइन फ़ंक्शन बनाया जाता है, जिसे चार अतिव्यापी खंडों में संसाधित किया गया था, और वापस एक साथ जोड़ दिया गया था। जैसा कि एफआईआर परिणाम (नीला) दिखाता है, आईआईआर परिणाम (लाल) में स्पष्ट विकृतियां बीच के अंतर के कारण नहीं होती हैं h[n] और hN[n] (चित्र 3 में हरा और लाल)। यह तथ्य कि hN[n] टेपर्ड (खिड़कीदार) वास्तव में इस संदर्भ में सहायक है। वास्तविक समस्या यह है कि इसमें पर्याप्त खिड़कियां नहीं हैं। प्रभावी रूप से, M = N, जबकि ओवरलैप-सेव विधि की आवश्यकता है M < N.

संख्या-सैद्धांतिक हिल्बर्ट रूपांतरण

संख्या सिद्धांतवादी हिल्बर्ट रूपांतरण एक विस्तार है[50] असतत हिल्बर्ट को पूर्णांक मॉड्यूलो में एक उपयुक्त अभाज्य संख्या में बदलना। इसमें यह असतत फूरियर रूपांतरण के संख्या सैद्धांतिक परिवर्तनों के सामान्यीकरण का अनुसरण करता है। संख्या सिद्धांत संबंधी हिल्बर्ट ट्रांसफॉर्म का उपयोग ऑर्थोगोनल असतत अनुक्रमों के सेट उत्पन्न करने के लिए किया जा सकता है।[51]

यह भी देखें

टिप्पणियाँ

  1. see § Periodic convolution, Eq.4b
  2. A closed form version of for even values of is:[48]
  3. A closed form version of for odd values of is:[49]


पृष्ठ उद्धरण

  1. due to Schwartz 1950; see Pandey 1996, Chapter 3.
  2. Zygmund 1968, §XVI.1
  3. e.g., Brandwood 2003, p. 87
  4. e.g., Stein & Weiss 1971
  5. e.g., Bracewell 2000, p. 359
  6. Kress 1989.
  7. Bitsadze 2001.
  8. 8.0 8.1 Khvedelidze 2001.
  9. Hilbert 1953.
  10. Hardy, Littlewood & Pólya 1952, §9.1.
  11. Hardy, Littlewood & Pólya 1952, §9.2.
  12. Riesz 1928.
  13. Calderón & Zygmund 1952.
  14. Duoandikoetxea 2000, Chapter 3.
  15. King 2009b.
  16. Titchmarsh 1948, Chapter 5.
  17. Titchmarsh 1948, §5.14.
  18. Stein & Weiss 1971, Lemma V.2.8.
  19. This theorem is due to Riesz 1928, VII; see also Titchmarsh 1948, Theorem 101.
  20. This result is due to Pichorides 1972; see also Grafakos 2004, Remark 4.1.8.
  21. See for example Duoandikoetxea 2000, p. 59.
  22. Titchmarsh 1948, Theorem 102.
  23. Titchmarsh 1948, p. 120.
  24. Pandey 1996, §3.3.
  25. Duistermaat & Kolk 2010, p. 211.
  26. Titchmarsh 1948, Theorem 104.
  27. Stein 1970, §III.1.
  28. See Bargmann 1947, Lang 1985, and Sugiura 1990.
  29. Gel'fand & Shilov 1968.
  30. Calderón & Zygmund 1952; see Fefferman 1971.
  31. Fefferman 1971; Fefferman & Stein 1972
  32. Titchmarsh 1948, Chapter V.
  33. Titchmarsh 1948, Theorem 95.
  34. Titchmarsh 1948, Theorem 103.
  35. Titchmarsh 1948, Theorem 105.
  36. Duren 1970, Theorem 4.2.
  37. see King 2009a, § 4.22.
  38. Pandey 1996, Chapter 2.
  39. Rosenblum & Rovnyak 1997, p. 92.
  40. Schreier & Scharf 2010, 14.
  41. Bedrosian 1962.
  42. Osgood, p. 320
  43. Osgood, p. 320
  44. Franks 1969, p. 88
  45. Tretter 1995, p. 80 (7.9)
  46. Rabiner 1975
  47. MathWorks. "hilbert – Discrete-time analytic signal using Hilbert transform". MATLAB Signal Processing Toolbox Documentation. Retrieved 2021-05-06.
  48. Johansson, p. 24
  49. Johansson, p. 25
  50. Kak 1970.
  51. Kak 2014.

संदर्भ


अग्रिम पठन


बाहरी संबंध